1. 特征值和特征向量
1.1 特征向量
假设有一个n行n列的方阵A,有 n 个不相同的特征值为 λ \lambda λ,特征向量为 x 1 , x 2 , ⋯ , x n x_1,x_2,\cdots,x_n x1,x2,⋯,xn.等式如下:
A x i = λ i x i , i = 1 , ⋯ , n → A 2 x = λ 2 x \begin{equation} Ax_i=\lambda_ix_i,i=1,\cdots,n\rightarrow A^2x=\lambda^2x \end{equation} Axi=λixi,i=1,⋯,n→A2x=λ2x
- 特征向量的好处在于,对于向量x来说, A x = λ x Ax=\lambda x Ax=λx,通过左乘矩阵A,还是不改变向量的方向,只是按照 λ \lambda λ倍进行缩放。
A k x = λ k x \begin{equation} A^kx=\lambda^kx \end{equation} Akx=λkx - 对于微分方程来说
d u d t = A u , e A t = e λ t \begin{equation} \frac{\mathrm{d}u}{\mathrm{d}t}=Au,\mathrm{e}^{At}=\mathrm{e}^{\lambda t} \end{equation} dtdu=Au,eAt=eλt - 通解表示如下:
u ( t ) = S e Λ t S − 1 u ( 0 ) = e A t u ( 0 ) \begin{equation} u(t)=Se^{\Lambda t} S^{-1} u(0)=e^{At}u(0) \end{equation} u(t)=SeΛtS−1u(0)=eAtu(0)
1.2 向量分解
假设矩阵A有n个线性无关的特征向量,那么对于任意矩阵v来说,可以分解为特征向量的线性组合
v = c 1 x 1 + c 2 x 2 + ⋯ + c n x n \begin{equation} v=c_1x_1+c_2x_2+\cdots+c_nx_n \end{equation} v=c1x1+c2x2+⋯+cnxn
- 两边同时乘以 A k , A k x = λ k x A^k,A^{k}x=\lambda^kx Ak,Akx=λkx:
A k v = c 1 λ 1 k x 1 + c 2 λ 2 k x 2 + ⋯ + c n λ n k x n \begin{equation} A^{k}v=c_1\lambda_1^{k}x_1+c_2\lambda_2^{k}x_2+\cdots+c_n\lambda_n^{k}x_n \end{equation} Akv=c1λ1kx1+c2λ2kx2+⋯+cnλnkxn - 特征向量在差分方程上的应用
u k + 1 = A u k → u k = A k u 0 = λ k x u 0 \begin{equation} u_{k+1}=Au_k\rightarrow u_k=A^ku_0=\lambda^kxu_0 \end{equation} uk+1<

最低0.47元/天 解锁文章
7772

被折叠的 条评论
为什么被折叠?



