[LeetCode 335] Self Crossing

You are given an array x of n positive numbers. You start at point (0,0) and moves x[0] metres to the north, then x[1] metres to the west, x[2] metres to the south, x[3]metres to the east and so on. In other words, after each move your direction changes counter-clockwise.

Write a one-pass algorithm with O(1) extra space to determine, if your path crosses itself, or not.

Example 1:

Given x = [2, 1, 1, 2],
┌───┐
│   │
└───┼──>
    │

Return true (self crossing)

Example 2:

Given x = [1, 2, 3, 4],
┌──────┐
│      │
│
│
└────────────>

Return false (not self crossing)

Example 3:

Given x = [1, 1, 1, 1],
┌───┐
│   │
└───┼>

Return true (self crossing)

Solution:

When it will be sefl crossing? the graph goes in spiral way, either alway growing outside, or always shrinking inside, both case will never self crossing. It only happens when from growing to shrinking. Graph default should be growing in former two steps, self crossing can only happens after third step.

One edge case is that once the graph not growing, there are two cases

1. it reaches the edge x[i] + x[i-4] >= x[i-2] (i>=4)

x[i] ==x[i-2] (i==3)

we need to resize the x[i-1] to x[i-1] - x[i-3], because next x[i+1] should compare x[i-1]


    public boolean isSelfCrossing(int[] x) {
        if(x.length <3) return false;
        int i=2;
        //spiral growing
        while(i<x.length && x[i]>x[i-2]) {
            i++;
        }
        if(i>=x.length) {
            return false;
        }
        //transition from growing to shrinking
        if((i==3 && x[i]==x[i-2]) ||(i>=4 && x[i]+x[i-4]>=x[i-2])) {
            x[i-1] -= x[i-3];
        }
        i++;
        //spiral shrinking
        while(i<x.length) {
            if(x[i]>=x[i-2]) return true;
            i++;
        }
        return false;
    }





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值