[LeetCode 319] Bulb switch

本文探讨了一个有趣的灯泡开关问题,通过分析不同轮次中灯泡的状态变化规律,揭示了最终点亮灯泡数量与数字因数之间的关系。特别地,文章提出了一种高效的算法来求解任意轮次后点亮灯泡的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

There are n bulbs that are initially off. You first turn on all the bulbs. Then, you turn off every second bulb. On the third round, you toggle every third bulb (turning on if it's off or turning off if it's on). For the nth round, you only toggle the last bulb. Find how many bulbs are on after n rounds.

Example:

Given n = 3. 
At first, the three bulbs are [off, off, off]. After first round, the three bulbs are [on, on, on]. After second round, the three bulbs are [on, off, on]. After third round, the three bulbs are [on, off, off].
So you should return 1, because there is only one bulb is on.

Solution:

go through some example from 1 to 5, there is a pattern, we need to find numbers of factor of the number.

Like, 

2 - 1,2

3 - 1,3

4 - 1,2,4

5 - 1,5

6- 1,2,3,6

9- 1,3,9

when you add the number which has odd number of factors, the result will increase 1. Every number has even number factors, except square number(1,4,9)

Same with this question Sqrt(x)

public int bulbSwitch(int n) {
        long low = 0;
        long high = n;
        if(n<=0) return 0;
        if(n==1) return 1;
        while(high - low >1) {
            long mid = low + (high-low)/2;
            if(mid * mid <=n) {
                low = mid;
            }else {
                high = mid;
            }
        }
        return (int) low;
    }





评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值