An Empirical Study of Graph Contrastive Learning

本文深入探讨了图对比学习的各个方面,包括数据增强、对比模式、对比目标和负采样策略。研究发现,拓扑增强对于提高GCL性能至关重要,而InfoNCE目标函数在多数情况下效果最佳。此外,对比模式应与下游任务粒度一致,以优化学习表示。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

摘要
图对比学习在图表示学习领域树立了新的范式,不需要人工标注信息。但对GCL的分析却寥寥无几。本文通过分析一般化的GCL范式的各个部分包括增强函数,对比模式,对比目标和负采样技术,然后分析各个组件之间的相互作用。实验结论显示,简单的拓扑增强可以生成稀疏视图带来不错的性能提升;对比模型应该与最终任务的粒度一致。

引言
一个经典的图对比学习方法是首先通过对输入的随机增强构建多个图视图,然后通过对比正负样本学习表示。以每个节点作为中心节点为例,正样本一般是其他视图中表示一致的一些节点,而负样本则是在该Batch中的给定图或者其他图中选择其他节点作为负样本。

尽管图对比学习已经取得了很大的成功,但是已有工作只是在模型级别做了评估,对于到底是什么因子影响GCL的效果尚未可知。为了分析这些问题,我们首先提出了一个一般化的对比范式,将之前的工作分解为四个部分分别为1)数据增强函数,2)对比模式,3)对比目标函数,4)负采样策略

我们的工作企图回答如下三个问题:
1)一个有效的GCL算法中最重要的组成部分是什么?
2)不同的设计考虑如何影响模型性能?
3)这些设计考虑是否有利于某些特定类型的数据或终端任务?

为设计高效的GCL算法,实验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小源er

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值