整合所有的具有癌与癌旁的样本
###导入矩阵
library(limma)
rt=as.matrix(rt)
rownames(rt)=rt[,1]
exp=rt[,2:ncol(rt)]
dimnames=list(rownames(exp),colnames(exp))
data=matrix(as.numeric(as.matrix(exp)),nrow=nrow(exp),dimnames=dimnames)
data=avereps(data)
data=data[rowMeans(data)>0.1,]
group_list=ifelse(as.numeric(substr(colnames(data),14,15)) < 10,'tumor','normal')##定义TCGA分组
tcga_normal <- data[,group_list == 'normal']
tcga_tumor <- data[, group_list == 'tumor']
tcga_tumor_need <- tcga_tumor[,((substr(colnames(tcga_tumor),1,12))%in%(substr(colnames(tcga_normal),1,12)))]
dim(tcga_tumor_need)
dim(tcga_normal)
tcga_tumor_need <- names(tcga_tumor_need)[!names(tcga_tumor_need) %in% c('01B')]
same <- intersect(row.names(tcga_normal),row.names(tcga_tumor_need))
mydata <- cbind(tcga_normal[same,],tcga_tumor_need[same,])
str(mydata)
dim(mydata)