Limited Permutation
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others)Total Submission(s): 680 Accepted Submission(s): 130
Problem Description
As to a permutation
p1,p2,⋯,pn
from
1
to
n
, it is uncomplicated for each
1≤i≤n
to calculate
(li,ri)
meeting the condition that
min(pL,pL+1,⋯,pR)=pi
if and only if
li≤L≤i≤R≤ri
for each
1≤L≤R≤n
.
Given the positive integers n , (li,ri) (1≤i≤n) , you are asked to calculate the number of possible permutations p1,p2,⋯,pn from 1 to n , meeting the above condition.
The answer may be very large, so you only need to give the value of answer modulo 109+7 .
Given the positive integers n , (li,ri) (1≤i≤n) , you are asked to calculate the number of possible permutations p1,p2,⋯,pn from 1 to n , meeting the above condition.
The answer may be very large, so you only need to give the value of answer modulo 109+7 .
Input
The input contains multiple test cases.
For each test case:
The first line contains one positive integer n , satisfying 1≤n≤106 .
The second line contains n positive integers l1,l2,⋯,ln , satisfying 1≤li≤i for each 1≤i≤n .
The third line contains n positive integers r1,r2,⋯,rn , satisfying i≤ri≤n for each 1≤i≤n .
It's guaranteed that the sum of n in all test cases is not larger than 3⋅106 .
Warm Tips for C/C++: input data is so large (about 38 MiB) that we recommend to use fread() for buffering friendly.
For each test case:
The first line contains one positive integer n , satisfying 1≤n≤106 .
The second line contains n positive integers l1,l2,⋯,ln , satisfying 1≤li≤i for each 1≤i≤n .
The third line contains n positive integers r1,r2,⋯,rn , satisfying i≤ri≤n for each 1≤i≤n .
It's guaranteed that the sum of n in all test cases is not larger than 3⋅106 .
Warm Tips for C/C++: input data is so large (about 38 MiB) that we recommend to use fread() for buffering friendly.
size_t fread(void *buffer, size_t size, size_t count, FILE *stream); // reads an array of count elements, each one with a size of size bytes, from the stream and stores them in the block of memory specified by buffer; the total number of elements successfully read is returned.
Output
For each test case, output "
Case #
x
:
y
" in one line (without quotes), where
x
indicates the case number starting from
1
and
y
denotes the answer of corresponding case.
Sample Input
3 1 1 3 1 3 3 5 1 2 2 4 5 5 2 5 5 5
Sample Output
Case #1: 2 Case #2: 3
Source
Recommend
对于一个1-n的排列,对每个位置给出一个l[i]和一个r[i],该位置的数要满足在这段区间内是最小值.若范围超多这段区间,则不是最小值.
考虑L,R这一段区间,先找到覆盖整个区间的那对l[i]和r[i],它的位置一定是这段区间内的值的最小值.
递归地考虑左区间和右区间,整个区间的解的个数为左区间解的个数*右区间解的个数*乘以C(区间长度,左区间长度)
预处理组合数的时候一定不能用递归的方法!!!!!!!!
T到怀疑人生
#include <cstring>
#include <iostream>
#include <stdio.h>
#include <algorithm>
#include <cmath>
#include <map>
#include<time.h>
using namespace std;
const int MAXN=1000010;
const int mod=1e9+7;
typedef long long LL;
inline char nc(){
static char buf[100000],*p1=buf,*p2=buf;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
inline bool rea(int & x)
{
char c=nc();x=0;
if(c==EOF) return false;
for(;c>'9'||c<'0';c=nc());
for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
return true;
}
inline bool rea(LL & x)
{
char c=nc();x=0;
if(c==EOF) return false;
for(;c>'9'||c<'0';c=nc());
for(;c>='0'&&c<='9';x=x*10+c-'0',c=nc());
return true;
}
LL inv[MAXN];
LL fac[MAXN];
LL Com(int n,int m){
return fac[n]*inv[m]%mod*inv[n-m]%mod;
}
void init(){
inv[0]=fac[0]=1;
inv[1]=1;
for(int i=1;i<MAXN;i++){
fac[i]=fac[i-1]*i%mod;
}
inv[1]=1;
for(int i=2;i<MAXN;i++){
inv[i]=(LL)(mod-mod/i)*inv[mod%i]%mod;
}
inv[0]=1;
for(int i=1;i<MAXN;i++){
inv[i]=inv[i-1]*inv[i]%mod;
}
}
typedef pair<int,int> P;
map<P,int> mp;
int l[MAXN],r[MAXN];
LL res=1;
void dfs(int L,int R){
if(res==0)
return;
if(R<L)
return;
int x=mp[P(L,R)];
if(x==0){
res=0;
return ;
}
if(L==R)
return;
int len=R-L;
int tt=x-L;
res=res*Com(len,tt)%mod;
dfs(L,x-1);
dfs(x+1,R);
}
int n;
bool read()
{
bool res=rea(n);
if(res==false){
return false;
}
for(int i=1;i<=n;i++)
rea(l[i]);
for(int i=1;i<=n;i++)
rea(r[i]);
return true;
}
int main(){
init();
int cas=1;
while(read()){
int ok=1;
res=1;
mp.clear();
for(int i=1;i<=n;i++){
mp[P(l[i],r[i])]=i;
}
dfs(1,n);
printf("Case #%d: %lld\n",cas++,res);
}
}

本文针对一个特定的排列问题——有限排列进行了深入探讨。问题要求在给定一系列限制条件的情况下,计算出所有可能的有效排列数量,并对结果进行取模运算。文章详细介绍了问题背景、输入输出格式、样例输入输出及问题来源等关键信息。
1139

被折叠的 条评论
为什么被折叠?



