窗口函数也称为OLAP函数。OLAP 是OnLine AnalyticalProcessing 的简称,意思是对数据库数据进行实时分析处理。
窗口函数的通用形式:
<窗口函数> OVER ([PARTITION BY <列名>]
ORDER BY <排序用列名>)
[]中的内容可以省略。
窗口函数最关键的是搞明白关键字PARTITON BY*和ORDER BY******的作用。
PARTITON BY是用来分组,即选择要看哪个窗口,类似于GROUP BY 子句的分组功能,但是PARTITION BY 子句并不具备GROUP BY 子句的汇总功能,并不会改变原始表中记录的行数。
ORDER BY是用来排序,即决定窗口内,是按那种规则(字段)来排序的。
专用窗口函数
- RANK函数**(英式排序)**
计算排序时,如果存在相同位次的记录,则会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、4 位……
- DENSE_RANK函数**(中式排序)**
同样是计算排序,即使存在相同位次的记录,也不会跳过之后的位次。
例)有 3 条记录排在第 1 位时:1 位、1 位、1 位、2 位……
- ROW_NUMBER函数
赋予唯一的连续位次。
2聚合函数在窗口函数上的使用
聚合函数在开窗函数中的使用方法和之前的专用窗口函数一样,只是出来的结果是一个累计的聚合函数值。
窗口函数的的应用 - 计算移动平均
在上面提到,聚合函数在窗口函数使用时,计算的是累积到当前行的所有的数据的聚合。 实际上,还可以指定更加详细的汇总范围。该汇总范围成为框架(frame)。
语法
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS n PRECEDING )
<窗口函数> OVER (ORDER BY <排序用列名>
ROWS BETWEEN n PRECEDING AND n FOLLOWING)
PRECEDING(“之前”), 将框架指定为 “截止到之前 n 行”,加上自身行
FOLLOWING(“之后”), 将框架指定为 “截止到之后 n 行”,加上自身行
BETWEEN 1 PRECEDING AND 1 FOLLOWING,将框架指定为 “之前1行” + “之后1行” + “自身”
GROUPING运算符
5.4.1ROLLUP - 计算合计及小计
常规的GROUP BY 只能得到每个分类的小计,有时候还需要计算分类的合计,可以用 ROLLUP关键字。