manacher(马拉车)求最长回文子串长度

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
char str[100000];
char s[200000];
int r[200000];
int main()
{
	memset(s,0,sizeof(s));
	memset(r,0,sizeof(r));
	scanf("%s",str);
	int len=strlen(str);
	int i;
	for(i=0;i<len;i++)
	{
		s[i*2]='#';
		s[i*2+1]=str[i];
	}
	s[i*2]='#';
	s[i*2+1]='\0';
	len=strlen(s);
	int maxright=0;
	int pos=0;
	int ans=0;
	for(int i=1;i<len;i++)
	{
		if(i<maxright)
		r[i]=min(maxright-i,r[2*pos-i]);
		else
		r[i]=1;
		while(s[i-r[i]]==s[i+r[i]]&&i-r[i]>=0)
		r[i]++;
		if(i+r[i]-1>maxright)
		{
			maxright=i+r[i]-1;
			pos=i;
		}
		ans=max(ans,r[i]);
	}
	printf("%d",ans-1);
	return 0;	
} 

(Mathcad+Simulink仿真)基于扩展描述函数法的LLC谐振变换器小信号分析设计内容概要:本文围绕“基于扩展描述函数法的LLC谐振变换器小信号分析设计”展开,结合Mathcad与Simulink仿真工具,系统研究LLC谐振变换器的小信号建模方法。重点利用扩展描述函数法(Extended Describing Function Method, EDF)对LLC变换器在非线性工作条件下的动态特性进行线性化近似,建立适用于频域分析的小信号模型,并通过Simulink仿真验证模型准确性。文中详细阐述了建模理论推导过程,包括谐振腔参数计算、开关网络等效处理、工作模态分析及频响特性提取,最后通过仿真对比验证了该方法在稳定性分析与控制器设计中的有效性。; 适合人群:具备电力电子、自动控制理论基础,熟悉Matlab/Simulink和Mathcad工具,从事开关电源、DC-DC变换器或新能源变换系统研究的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握LLC谐振变换器的小信号建模难点与解决方案;②学习扩展描述函数法在非线性系统线性化中的应用;③实现高频LLC变换器的环路补偿与稳定性设计;④结合Mathcad进行公式推导与参数计算,利用Simulink完成动态仿真验证。; 阅读建议:建议读者结合Mathcad中的数学推导与Simulink仿真模型同步学习,重点关注EDF法的假设条件与适用范围,动手复现建模步骤和频域分析过程,以深入理解LLC变换器的小信号行为及其在实际控制系统设计中的应用。
<think>好的,我现在需要帮助用户理解马拉算法(Manacher's Algorithm)的实现方法和原理,以及如何用它优化最长回文子串检测。用户之前已经了解过中心扩展法,现在想升级到更高效的算法。我需要参考提供的引用内容,特别是引用1、3和4中的信息,来构建一个清晰的解释。 首先,我得回忆马拉算法的核心思想。根据引用3,马拉算法通过预处理字符串和处理奇偶回文的情况,将时间复杂度降到了线性O(n)。引用4中的代码示例展示了如何插入分隔符(如#号)来统一处理奇偶长度的回文,这是关键的一步。同时,算法利用回文半径和对称性来避免重复计算,这应该和动态规划或中心扩展法中的某些优化有关。 接下来,我需要拆解算法的步骤。预处理部分,插入特殊字符将字符串转换为奇数长度,这样可以统一处理奇偶情况。例如,字符串"abba"变成"#a#b#b#a#",每个字符周围都有#,这样无论原回文是奇数还是偶数长度,转换后都变成奇数长度,方便处理。 然后,维护几个关键变量:当前最大右边界R,对应的中心C,以及每个位置的回文半径数组P。当遍历每个字符时,利用对称性(mirror)来确定初始回文半径,这样可以减少不必要的扩展次数。例如,如果当前字符i在R的左侧,可以利用其关于C的对称点mirror的P值来初始化P[i],避免从零开始扩展。 在代码实现部分,需要处理不同的case,比如i在R内或外的情况,然后进行中心扩展。引用4中的Java代码展示了如何处理这些情况,包括更新C和R的位置,以及记录最大回文长度和对应的中心点。我需要将这段代码转换为C++,并确保正确性,比如处理字符串预处理和回文半径的计算。 此外,用户可能对算法的时间复杂度分析感兴趣。马拉算法的时间复杂度是O(n),因为每个字符的扩展操作总体上是线性的,每个字符最多被扩展一次。这需要详细解释,确保用户明白为什么这个算法比中心扩展法更高效。 同时,用户的问题提到了优化方法和代码示例,所以需要将理论解释与代码结合,逐步说明每个部分的作用。比如,预处理字符串的部分,如何构造新的字符串,然后初始化P数组,遍历每个字符,利用对称性确定初始半径,然后进行扩展,更新最大边界和中心。 可能还需要对比其他方法,如动态规划和中心扩展,突出马拉算法的优势,如线性时间和较低的空间复杂度(O(n))。引用2中提到的动态规划空间复杂度较高,而马拉算法在空间上只需要一个数组,因此更优。 测试用例也是重要的,需要提供几个示例来验证代码的正确性,比如"babad"应该返回"bab"或"aba",而"cbbd"应该返回"bb"。这有助于用户理解代码的实际效果。 最后,确保回答结构清晰,分步骤讲解,原理与实现并重,引用相关的参考文献,并在末尾添加相关问题,引导用户深入思考。比如,如何修改代码以返回最长回文子串本身,或者如何处理特殊字符的情况等。</think>### 马拉算法(Manacher's Algorithm)详解 --- #### 一、算法核心原理 马拉算法通过**预处理字符串**和**利用回文对称性**,将时间复杂度优化到$O(n)$。其核心优化点包括: 1. **预处理插入分隔符**:将任意字符串转换为**奇数长度**,统一处理奇偶回文 - 例如:`"abba" → "#a#b#b#a#"` 2. **维护回文半径数组**:记录每个位置的最长回文半径$P[i]$ 3. **动态右边界维护**:通过当前最大右边界$R$和中心点$C$减少重复计算[^3] --- #### 二、算法步骤分解 ##### 步骤1:字符串预处理 ```cpp string preprocess(const string& s) { string t = "^#"; for (char c : s) { t += c; t += '#'; } t += "$"; // 避免边界判断 return t; } ``` *作用*:原字符串`"abc"`转换为`^#a#b#c#$`,所有回文子串长度变为奇数[^4] --- ##### 步骤2:核心算法实现 ```cpp string manacher(const string& s) { if (s.empty()) return ""; string t = preprocess(s); int n = t.size(); vector<int> P(n, 0); // 回文半径数组 int C = 0, R = 0; // 当前最大回文中心及右边界 int max_len = 0; // 最大回文长度 int center = 0; // 最长回文的中心 for (int i = 1; i < n-1; ++i) { int mirror = 2 * C - i; // 计算i的对称点 // 关键优化:利用对称性初始化P[i] if (i < R) { P[i] = min(R - i, P[mirror]); } // 中心扩展 while (t[i + P[i] + 1] == t[i - P[i] - 1]) { P[i]++; } // 更新右边界和中心 if (i + P[i] > R) { C = i; R = i + P[i]; } // 记录最大值 if (P[i] > max_len) { max_len = P[i]; center = i; } } // 计算结果在原字符串中的位置 int start = (center - max_len) / 2; return s.substr(start, max_len); } ``` --- #### 三、关键优化技术解析 | 技术 | 实现方式 | 优化效果 | |------|----------|----------| | 对称性利用 | 通过镜像点`mirror`获取初始半径 | 避免重复计算 | | 动态边界维护 | 实时更新$C$和$R$ | 限制扩展次数 | | 预处理统一处理 | 插入分隔符`#` | 消除奇偶差异 | --- #### 四、时间复杂度分析 - **预处理阶段**:$O(n)$ - **主循环阶段**:每个字符最多被扩展一次,总扩展次数不超过$n$次 → **整体$O(n)$**[^3] --- #### 五、测试用例验证 ```cpp int main() { cout << manacher("babad") << endl; // 输出 "bab" 或 "aba" cout << manacher("cbbd") << endl; // 输出 "bb" cout << manacher("a") << endl; // 输出 "a" return 0; } ``` --- #### 六、与其他算法对比 | 算法 | 时间复杂度 | 空间复杂度 | 适用场景 | |------|------------|------------|----------| | 暴力法 | $O(n^3)$ | $O(1)$ | 教学演示 | | 中心扩展 | $O(n^2)$ | $O(1)$ | 常规应用 | | 动态规划 | $O(n^2)$ | $O(n^2)$ | 子问题分析 | | **马拉算法** | $O(n)$ | $O(n)$ | 大规模数据处理[^2] | --- ### 七、算法特性总结 1. **线性时间复杂度**:适用于处理百万级长度的字符串 2. **空间效率高**:仅需一个长度$n$的辅助数组 3. **边界处理技巧**:通过添加`^`和`$`符号避免特殊判断[^4] --- ### 相关问题 1. 如何处理字符串中的特殊字符(如`#`本身)? 2. 如何修改算法同时返回所有最长回文子串? 3. 为什么预处理时选择`#`作为分隔符? 4. 如何证明该算法的时间复杂度是严格的$O(n)$?[^3]
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值