1046. Shortest Distance (20)
The task is really simple: given N exits on a highway which forms a simple cycle, you are supposed to tell the shortest distance between any pair of exits.
Input Specification:
Each input file contains one test case. For each case, the first line contains an integer N (in [3, 105]), followed by N integer distances D1 D2 ... DN, where Di is the distance between the i-th and the (i+1)-st exits, and DN is between the N-th and the 1st exits. All the numbers in a line are separated by a space. The second line gives a positive integer M (<=104), with M lines follow, each contains a pair of exit numbers, provided that the exits are numbered from 1 to N. It is guaranteed that the total round trip distance is no more than 107.
Output Specification:
For each test case, print your results in M lines, each contains the shortest distance between the corresponding given pair of exits.
Sample Input:5 1 2 4 14 9 3 1 3 2 5 4 1Sample Output:
3 107
在读入每个出口与下个出口的距离的时候,也要对这些距离进行加和,从而可以减少计算两个特定的出口之间的最短距离的计算量。达到一劳永逸的效果。否则,当测试点很多的时候,运行时间可能达不到要求,最后一个测试点通不过。
#include <iostream> #include <vector> using namespace std; int main() { vector<int> dis; int num_exit; cin >>num_exit; dis.push_back(0); int total_dis=0; for(int i=1;i<num_exit+1;i++) { int tmp; cin >>tmp; total_dis+=tmp; dis.push_back(total_dis); } int n; cin >>n; for(int i=0;i<n;i++) { int st,en; cin >>st >>en; int a,b; a=max(st,en); b=min(st,en); int dis1,dis2; dis1=dis.at(a-1)-dis.at(b-1); dis2=dis.back()-dis1; if(dis1<dis2) cout <<dis1 <<endl; else cout <<dis2 <<endl; } return 0; }
本博客介绍了一个简单的任务:在形成环状的高速公路上,给出N个出口,计算任意两个出口间的最短距离。通过输入N个出口与下一个出口的距离,以及M组出口对,本算法有效计算了每组出口对之间的最短距离。
417

被折叠的 条评论
为什么被折叠?



