1013. Battle Over Cities (25)

本文介绍了一种算法,用于解决战争中城市被占领后,高速公路网络断裂的问题。通过输入城市数量、现存高速公路及关注的城市,算法能快速计算出若某城市丢失,则需修复的高速公路数量。

1013. Battle Over Cities (25)

时间限制
400 ms
内存限制
65536 kB
代码长度限制
16000 B
判题程序
Standard
作者
CHEN, Yue

It is vitally important to have all the cities connected by highways in a war. If a city is occupied by the enemy, all the highways from/toward that city are closed. We must know immediately if we need to repair any other highways to keep the rest of the cities connected. Given the map of cities which have all the remaining highways marked, you are supposed to tell the number of highways need to be repaired, quickly.

For example, if we have 3 cities and 2 highways connecting city1-city2 and city1-city3. Then if city1 is occupied by the enemy, we must have 1 highway repaired, that is the highway city2-city3.

Input

Each input file contains one test case. Each case starts with a line containing 3 numbers N (<1000), M and K, which are the total number of cities, the number of remaining highways, and the number of cities to be checked, respectively. Then M lines follow, each describes a highway by 2 integers, which are the numbers of the cities the highway connects. The cities are numbered from 1 to N. Finally there is a line containing K numbers, which represent the cities we concern.

Output

For each of the K cities, output in a line the number of highways need to be repaired if that city is lost.

Sample Input
3 2 3
1 2
1 3
1 2 3
Sample Output
1
0

0

这个题目实际上也就是在去除某个节点后,计算剩下的连通集个数n,然后需要修复的公路的数目为n-1。可以通过dfs或者bfs来对剩余的图进行遍历,这里使用dfs来进行遍历。

#include <iostream>
#include <queue>
using namespace std;
int num_city,num_highway,k;
int road[1000][1000]={0};
int visited[1000]={0};

void dfs(int city);
int main()
{
    queue<int> q;
    cin >>num_city >>num_highway >>k;
    for(int i=0;i<num_highway;i++)
    {
        int a,b;
        cin >>a >>b ;
        road[a][b]=road[b][a]=1;
    }
    for(int i=0;i<k;i++)
    {
        int a;
        cin >>a;
        q.push(a);
    }
    int cnt=-1;
    for(int i=0;i<k;i++)
    {
        int occupied=q.front();
        q.pop();
        visited[occupied]=1;
        for(int j=1;j<num_city+1;j++)
        {
            if(visited[j]!=1)
            {
                visited[j]=1;
                dfs(j);
                cnt++;
            }
        }
        cout <<cnt <<endl;
        cnt=-1;
        for(int i=1;i<num_city+1;i++)
            visited[i]=0;
    }
    return 0;
}
void dfs(int city)
{
    for(int i=1;i<num_city+1;i++)
    {
        if(visited[i]!=1 && road[city][i]==1)
        {
            visited[i]=1;
            dfs(i);
        }
    }
}


内容概要:本文系统探讨了CUDA并行计算优化技巧在计算机竞赛中的实战应用,重点解决暴力枚举在大规模数据下超时的问题。通过将独立的解空间验证任务分配给GPU海量线程并发执行,显著提升计算效率。文章围绕图论(全源最短路径Floyd-Warshall算法)和数值计算(多初始值牛顿迭代求解非线性方程)两大高频竞赛场景,详细剖析了线程索引映射、原子操作、常量内存、流并发等核心优化技术,并提供了串行与并行代码对比及性能分析。结果显示,在A100和RTX 3090等GPU上,加速比可达72至150倍,实现从分钟级到秒级甚至毫秒级的性能突破。此外,文章展望了动态并行、多GPU协同、AI辅助调优等未来趋势,强调CUDA优化对培养软硬件协同思维的重要意义。; 适合人群:具备一定C/C++编程基础和算法竞赛经验,熟悉基本图论与数值计算问题,希望提升高性能计算能力的高校学生或竞赛选手(尤其是参与ACM、ICPC、NOI等赛事的1-3年备赛者); 使用场景及目标:①掌握如何将传统暴力枚举算法转化为GPU并行版本;②深入理解Floyd-Warshall和牛顿迭代等经典算法的并行化限制与优化策略;③学习CUDA内存模型、线程组织与同步机制在实际问题中的应用; 阅读建议:建议结合文中代码案例在支持CUDA的环境上动手实现并调试,重点关注线程映射、内存访问模式与数据依赖处理,同时对比串行与并行版本的运行效率,深化对并行计算本质的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值