674. Longest Continuous Increasing Subsequence

本文探讨了如何找出未排序整数数组中最长连续递增子序列的长度,并提供了两种解决方案:一种使用动态规划,另一种通过遍历数组并维护最大长度来解决。这两种方法都有效地解决了问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given an unsorted array of integers, find the length of longest continuous increasing subsequence (subarray).

Example 1:
Input: [1,3,5,4,7]
Output: 3
Explanation: The longest continuous increasing subsequence is [1,3,5], its length is 3.
Even though [1,3,5,7] is also an increasing subsequence, it’s not a continuous one where 5 and 7 are separated by 4.

Example 2:
Input: [2,2,2,2,2]
Output: 1
Explanation: The longest continuous increasing subsequence is [2], its length is 1.
1.动态规划:
dp[i] 表示当前位置的最大连续长度
公式:dp[i] = dp[i - 1] + 1 if (前一元素小于当前元素)

class Solution(object):
    def findLengthOfLCIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        dp = [1]*len(nums)
        tmax=1
        for i in range(1,len(nums)):
            if nums[i]>nums[i-1]:
                dp[i]=dp[i-1]+1
            tmax = max(tmax,dp[i])
        return tmax
        

2.维护一个maxLen,每次遇到递增数字就tempLen++,遇到一个不是递增数字的话,就把tempLen 和maxLen 中大的保存到maxLen。

class Solution(object):
    def findLengthOfLCIS(self, nums):
        """
        :type nums: List[int]
        :rtype: int
        """
        if not nums:
            return 0
        maxlen=1
        templen=1
        for i in range(1,len(nums)):
            if nums[i]>nums[i-1]:
                templen+=1
                maxlen=max(maxlen,templen)
            else:
                templen=1
        return maxlen
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值