Given a binary tree, determine if it is a valid binary search tree (BST).
Assume a BST is defined as follows:
The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than the node’s key.
Both the left and right subtrees must also be binary search trees.
Example 1:
Input:
2
/
1 3
Output: true
python:
class Solution(object):
def isValidBST(self, root):
"""
:type root: TreeNode
:rtype: bool
"""
if root==None:
return True
if root.left==None and root.right==None:
return True
self.list1=[]
self.inOrder(root)
for i in range(0,len(self.list1)-1):
if self.list1[i+1]<=self.list1[i]:
return False
return True
def inOrder(self,root):
if root==None:
return
self.inOrder(root.left)
self.list1.append(root.val)
self.inOrder(root.right)
c++:
class Solution {
public:
bool isValidBST(TreeNode* root)
{
if(!root)
return true;
vector<int> vals;
inOrder(root,&vals);
for(int i=0;i<vals.size()-1;i++)
{
if(vals[i]>=vals[i+1])
return false;
}
return true;
}
void inOrder(TreeNode* root,vector<int> *vals)
{
if(!root)
return;
inOrder(root->left,vals);
vals->push_back(root->val);
inOrder(root->right,vals);
}
};