题意
略
分析
要求最大的合法半径。
可以考虑二分,每次check重新建图跑tarjan判断是否合法。
小于ans的半径一定合法,本题是有二分性质的。
(数组开小了一直T调了好久)
代码
#include <bits/stdc++.h>
using namespace std;
//-----pre_def----
const double PI = acos(-1.0);
const int INF = 0x3f3f3f3f;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
typedef pair<double, double> PDD;
#define fir(i, a, b) for (int i = (a); i <= (b); i++)
#define rif(i, a, b) for (int i = (a); i >= (b); i--)
#define endl '\n'
#define init_h memset(h, -1, sizeof h), idx = 0;
#define lowbit(x) x &(-x)
//---------------
const int N = 200 + 10;
const double eps = 1e-5;
double a[N], b[N], c[N], d[N];
int read()
{
int ret = 0, flag = 0;
char ch;
if ((ch = getchar()) == '-')
flag = 1;
else if (ch >= '0' && ch <= '9')
ret = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9')
ret = ret * 10 + (ch - '0');
return flag ? -ret : ret;
}
struct two_SAT
{
int n; //未翻倍之前的点数
bool in_stack[N];
int id[N], stk[N], top, dfn[N], low[N], times, scc_cnt; //所在scc编号,栈,dfs序,最下能到哪个节点,时间戳,scc编号
int h[N], e[N*N], ne[N*N], idx;//这里数组开小了,一直TLE,,,
void init(int _n)
{
n = _n;
init_h;
}
void over()
{
memset(id, 0, sizeof id);
memset(dfn, 0, sizeof dfn);
memset(low, 0, sizeof low);
memset(in_stack,0,sizeof in_stack);
times = top = scc_cnt = 0;
}
inline void add(int a, int b)
{
e[idx] = b;
ne[idx] = h[a];
h[a] = idx++;
}
inline void add_and(int x, int valx, int y, int valy) //如果x取valx,则y必须取valy
{
//x -> y or !x -> y or x -> !y or !x -> !y
add(x + valx * n, y + valy * n);
}
void add_or(int x, int valx, int y, int valy) //x取valx 或 y取valy
{
add(x + (!valx) * n, y + valy * n);
add(y + (!valy) * n, x + valx * n);
}
void add_one(int x, int valx)
{
add_or(x, valx, x, valx);
}
bool check(double x1, double y1, double x2, double y2, double r)
{
return (x1 - x2) * (x1 - x2) + (y1 - y2) * (y1 - y2) < 2 * 2 * r * r;
}
void build(double dis)
{
fir(i, 1, n)
{
fir(j, i + 1, n)
{
//i,j;
if (check(a[i], b[i], a[j], b[j], dis))
{
add_and(i, 0, j, 1);
add_and(j, 0, i, 1);
}
if (check(a[i], b[i], c[j], d[j], dis))
{
add_and(i, 0, j, 0);
add_and(j, 1, i, 1);
}
if (check(c[i], d[i], a[j], b[j], dis))
{
add_and(i, 1, j, 1);
add_and(j, 0, i, 0);
}
if (check(c[i], d[i], c[j], d[j], dis))
{
add_and(i, 1, j, 0);
add_and(j, 1, i, 0);
}
}
}
}
void tarjan(int u)
{
dfn[u] = low[u] = ++times;
stk[++top] = u, in_stack[u] = true;
for (int i = h[u]; ~i; i = ne[i])
{
int j = e[i];
if (!dfn[j])
{
tarjan(j);
low[u] = min(low[u], low[j]);
}
else if (in_stack[j])
{
low[u] = min(low[u], dfn[j]);
}
}
if (dfn[u] == low[u])
{
++scc_cnt;
int y;
do
{
y = stk[top--];
in_stack[y] = false;
id[y] = scc_cnt;
} while (y != u);
}
}
void tarjan()
{
fir(i, 1, n << 1) if (!dfn[i])
tarjan(i);
}
bool solve()
{
tarjan();
for (int i = 1; i <= n; i++)
if (id[i] == id[i + n])
return false;
return true;
}
} t;
void init() {}
int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt", "r", stdin);
freopen("out.txt", "w", stdout);
int StartTime = clock();
#endif
int n;
while (~scanf("%d", &n))
{
fir(i, 1, n)
{
scanf("%lf%lf%lf%lf", &a[i], &b[i], &c[i], &d[i]);
}
double l = 0, r = 40000;
while(r-l>eps)
{
double mid = (l + r) / 2.0;
t.init(n);
t.build(mid);
if (t.solve())
{
l = mid;
}
else
{
r = mid;
}
t.over();
}
printf("%.2lf\n", l);
}
#ifndef ONLINE_JUDGE
printf("Run_Time = %d ms\n", clock() - StartTime);
#endif
return 0;
}