hdu 3622 Bomb Game(二分+2-sat)

本文介绍了一个计算机游戏中的算法挑战——放置炸弹以最大化得分。通过二分查找和2-SAT图论的方法来解决游戏中的策略问题,确保每个爆炸圈不相交,并计算最优半径。

Bomb Game

Time Limit: 10000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 5985    Accepted Submission(s): 2167


Problem Description
Robbie is playing an interesting computer game. The game field is an unbounded 2-dimensional region. There are N rounds in the game. At each round, the computer will give Robbie two places, and Robbie should choose one of them to put a bomb. The explosion area of the bomb is a circle whose center is just the chosen place. Robbie can control the power of the bomb, that is, he can control the radius of each circle. A strange requirement is that there should be no common area for any two circles. The final score is the minimum radius of all the N circles.
Robbie has cracked the game, and he has known all the candidate places of each round before the game starts. Now he wants to know the maximum score he can get with the optimal strategy.
 

Input
The first line of each test case is an integer N (2 <= N <= 100), indicating the number of rounds. Then N lines follow. The i-th line contains four integers x1i, y1i, x2i, y2i, indicating that the coordinates of the two candidate places of the i-th round are (x1i, y1i) and (x2i, y2i). All the coordinates are in the range [-10000, 10000].
 

Output
Output one float number for each test case, indicating the best possible score. The result should be rounded to two decimal places.
 

Sample Input
2 1 1 1 -1 -1 -1 -1 1 2 1 1 -1 -1 1 -1 -1 1
 

Sample Output
1.41 1.00
 
思路:
二分一个半径,然后2-sat建图。
代码:

#include<bits/stdc++.h>
using namespace std;
const int maxn=205;
int X[maxn],Y[maxn],n;
vector<int>G[maxn];
stack<int>P;
int dfn[maxn],low[maxn],fa[maxn],tol,num;
int instack[maxn];
double dist(int i,int j)
{
    return sqrt((X[i]-X[j])*(X[i]-X[j])+(Y[i]-Y[j])*(Y[i]-Y[j]));
}
void tarjan(int v)
{
    dfn[v]=low[v]=++tol;
    P.push(v);instack[v]=1;
    for(int i=0;i<G[v].size();i++)
    {
        int to=G[v][i];
        if(!dfn[to])
        {
            tarjan(to);
            low[v]=min(low[v],low[to]);
        }
        else if(instack[to]) low[v]=min(low[v],dfn[to]);
    }
    if(dfn[v]==low[v])
    {
        num++;int t;
        do
        {
            t=P.top();P.pop();
            fa[t]=num;
            instack[t]=0;
        }
        while(v!=t);
    }
}
bool judge()
{
    for(int i=1;i<=n;i++)
        if(fa[i]==fa[i+n]) return 0;
    return 1;
}
bool check(double L)
{
    tol=num=0;
    for(int i=0;i<maxn;i++)
    {
        G[i].clear();
        dfn[i]=low[i]=instack[i]=0;
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(i==j)continue;
            if(dist(i,j)<2*L) G[i].push_back(j+n);
            if(dist(i,j+n)<2*L) G[i].push_back(j);
            if(dist(i+n,j)<2*L) G[i+n].push_back(j+n);
            if(dist(i+n,j+n)<2*L) G[i+n].push_back(j);
        }
    }
    for(int i=1;i<=2*n;i++)
        if(!dfn[i])tarjan(i);
    return judge();
}
int main()
{
    while(~scanf("%d",&n))
    {
        for(int i=1;i<=n;i++)
            scanf("%d%d%d%d",&X[i],&Y[i],&X[i+n],&Y[i+n]);
        double l=0.0,r=100000.0;
        while(r-l>1e-5)
        {
            double mid=(l+r)/2;
            if(check(mid)) l=mid;
            else r=mid;
        }
        printf("%.2lf\n",r);
    }
    return 0;
}


内容概要:本文介绍了一个基于Matlab的综合能源系统优化调度仿真资源,重点实现了含光热电站、有机朗肯循环(ORC)和电含光热电站、有机有机朗肯循环、P2G的综合能源优化调度(Matlab代码实现)转气(P2G)技术的冷、热、电多能互补系统的优化调度模型。该模型充分考虑多种能源形式的协同转换与利用,通过Matlab代码构建系统架构、设定约束条件并求解优化目标,旨在提升综合能源系统的运行效率与经济性,同时兼顾灵活性供需不确定性下的储能优化配置问题。文中还提到了相关仿真技术支持,如YALMIP工具包的应用,适用于复杂能源系统的建模与求解。; 适合人群:具备一定Matlab编程基础和能源系统背景知识的科研人员、研究生及工程技术人员,尤其适合从事综合能源系统、可再生能源利用、电力系统优化等方向的研究者。; 使用场景及目标:①研究含光热、ORC和P2G的多能系统协调调度机制;②开展考虑不确定性的储能优化配置与经济调度仿真;③学习Matlab在能源系统优化中的建模与求解方法,复现高水平论文(如EI期刊)中的算法案例。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码和案例文件,按照目录顺序逐步学习,重点关注模型构建逻辑、约束设置与求解器调用方式,并通过修改参数进行仿真实验,加深对综合能源系统优化调度的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值