在文章开头,我想先做几点说明:
1、本文的内容来自我对Yarn的相应功能的理解和实践。而我对该部分功能的理解主要来自对Hadoop的开发者之前相应言论的分析,并且我也将我的分析发给了Hadoop community, 并得到了Yarn的创始人兼架构师Arun Murthy的肯定回复。
2、本文中uber的配置部分,主要参考之前Hadoop开发者的言论。但是我当初看该言论的时候对一些细节有所疑惑,因此在本文中我对很多地方做了修改:使一些用词的引用前后一致,并加上了很多描述性的过渡语言。
3、本文为研究性质,并非官方文档的翻译。因此,如果读者发现任何纰漏,希望不吝赐教,万分感激!
首先,简单回顾一下Hadoop 1.x中的JVM重用功能:用户可以通过更改配置,来指定TaskTracker在同一个JVM里面最多可以累积执行的Task的数量(默认是1)。这样的好处是减少JVM启动、退出的次数,从而达到提高任务执行效率的目的。 配置的方法也很简单:通过设置mapred-site.xml里面参数mapred.job.reuse.jvm.num.tasks的值。该值默认是1,意味着TaskTracker会为每一个Map任务或Reduce任务都启动一个JVM,当任务执行完后再退出该JVM。依次类推,如果该值设置为3,TaskTracker则会在同一个JVM里面最多依次执行3个Task,然后才会退出该JVM。
在 Yarn(Hadoop MapReduce v2)里面,不再有参数mapred.job.reuse.jvm.num.tasks,但它也有类似JVM Reuse的功能——uber。据Arun的说法,启用该功能能够让一些任务的执行效率提高2到3倍(“we've observed 2x-3x speedup for some jobs”)。不过,由于Yarn的结构已经大不同于MapReduce v1中JobTracker/TaskTracker的结构,因此uber的原理和配置都和之前的JVM重用机制大不相同。
1) uber