7.算法问题之不基于比较的排序

文章介绍了两种基于桶排序思想的非比较排序算法:计数排序和基数排序。计数排序适用于0-200之间的整数,通过统计每个数值出现的次数进行排序;基数排序则针对无负数的整数,利用数字的每一位分别进行排序,适用于多位数的情况。这两种方法的时间复杂度均为O(N),但对数据范围有一定要求。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

桶排序思想下的排序:计数排序 & 基数排序

1)桶排序思想下的排序都是不基于比较的排序

2)时间复杂度为O(N),额外空间负载度O(M)

3)应用范围有限,需要样本的数据状况满足桶的划分

习题1 计数排序

// only for 0~200 value
	public static void countSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);
		}
		int[] bucket = new int[max + 1];
		for (int i = 0; i < arr.length; i++) {
			bucket[arr[i]]++;
		}
		int i = 0;
		for (int j = 0; j < bucket.length; j++) {
			while (bucket[j]-- > 0) {
				arr[i++] = j;
			}
		}
	}

习题2 基数排序

// only for no-negative value
	public static void radixSort(int[] arr) {
		if (arr == null || arr.length < 2) {
			return;
		}
		radixSort(arr, 0, arr.length - 1, maxbits(arr));
	}

	public static int maxbits(int[] arr) {
		int max = Integer.MIN_VALUE;
		for (int i = 0; i < arr.length; i++) {
			max = Math.max(max, arr[i]);
		}
		int res = 0;
		while (max != 0) {
			res++;
			max /= 10;
		}
		return res;
	}

	// arr[L..R]排序  ,  最大值的十进制位数digit
	public static void radixSort(int[] arr, int L, int R, int digit) {
		final int radix = 10;
		int i = 0, j = 0;
		// 有多少个数准备多少个辅助空间
		int[] help = new int[R - L + 1];
		for (int d = 1; d <= digit; d++) { // 有多少位就进出几次
			// 10个空间
		    // count[0] 当前位(d位)是0的数字有多少个
			// count[1] 当前位(d位)是(0和1)的数字有多少个
			// count[2] 当前位(d位)是(0、1和2)的数字有多少个
			// count[i] 当前位(d位)是(0~i)的数字有多少个
			int[] count = new int[radix]; // count[0..9]
			for (i = L; i <= R; i++) {
				// 103  1   3
				// 209  1   9
				j = getDigit(arr[i], d);
				count[j]++;
			}
			for (i = 1; i < radix; i++) {
				count[i] = count[i] + count[i - 1];
			}
			for (i = R; i >= L; i--) {
				j = getDigit(arr[i], d);
				help[count[j] - 1] = arr[i];
				count[j]--;
			}
			for (i = L, j = 0; i <= R; i++, j++) {
				arr[i] = help[j];
			}
		}
	}

	public static int getDigit(int x, int d) {
		return ((x / ((int) Math.pow(10, d - 1))) % 10);
	}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值