[初阶数据结构】时间复杂度与空间复杂度

 

 前言

📚作者简介:爱编程的小马,正在学习C/C++,Linux及MySQL。

📚本文收录于初阶数据结构系列,本专栏主要是针对时间、空间复杂度,顺序表和链表、栈和队列、二叉树以及各类排序算法,持续更新!

📚相关专栏C++及Linux正在发展,敬请期待!

本文主要讲解时间复杂度以及空间复杂度,对大O渐进法会有比较详细的讲解,相信大家学完本文,会对复杂度有个很好的理解,那现在开始吧!


1. 算法效率

1.1 如何衡量一个算法的好坏? 

首先给大家看一段求斐波那契数列数:

int Feb(int n)
{
	if (n < 3)
		return 1;
	else
		return Feb(n - 1) + Feb(n - 2);
}
int main()
{
	int n = 0;
	scanf("%d", &n);
	int ret = Feb(n);
	printf("%d\n", ret);
	return 0;
}

斐波那契实现递归非常的简洁,但是简洁的代码一定好吗?简洁的代码执行效率就高吗?其实不是的,我可以告诉大家,这个递归的时间复杂度是O(2^n),比如我想求第50个斐波那契数,是很慢的。那我们如何衡量一个代码是好还是坏呢?

1.2 算法的复杂度

算法在编写成可执行程序后,运行时需要耗费时间资源和空间(内存)资源。因此衡量一个算法的好坏,一般是从时间和空间两个维度来衡量的,即时间复杂度和空间复杂度。

时间复杂度主要衡量一个算法运行的快慢,而空间复杂度主要衡量一个算法运行所需要的额外空间。在计算机发展的早起,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的地步,所以我们如今已经不再需要特别关注一个算法的空间复杂度,而是要两者综合考虑。

2. 时间复杂度

2.1 时间复杂度的概念

时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间,一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是都可以,但是比较麻烦,所以才有了时间复杂度这个分析方式,一个算法所花费的时间与其语句的执行次数成正比例,所以,算法中的基本操作的执行次数,为算法的时间复杂度。

即:找到了某条基本语句与问题规模N之间的数学表达式,就是算出了该算法的时间复杂度。

例如:
 

void Func1(int N)
{
	int count = 0;
	for (int i = 0; i < N; ++i)
	{
		for (int j = 0; j < N; ++j)
		{
			++count;
		}
	}
	for (int k = 0; k < 2*N; ++k)
	{
			++count;
	}
	int M = 10;
	while (M--)
	{
		++count;
	}
	printf("%d", count);
}

Func1执行的基本操作次数:

F(N) = N^{_{2}}+2*N+10 

怎么样得到的这个函数表达是呢?挨个循环分析,首先第一个 i 和 j 控制的循环,是不是里外都是N次,求和就是N*N ,其次第二个k控制的循环,是不是2N次,最后是M控制的循环,是10次,时间是累计的,所以用加法加在一起就是上文代码的时间复杂度。

 实际上,我们不需要精确到这种程度,因为没有意义。只是需要大概的精确度,可以知道这个算法的时间复杂度是

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值