组队学习第三天:心跳信号分类之特征工程

原题目地址:零基础入门数据挖掘-心跳信号分类预测
本文是鸣鹤星空小组组队学习的集体成果。
id:李由,一只小呆
源地址:组队学习

1 学习目标

  • 学习时间序列数据的特征预处理方法
  • 学习时间序列特征处理工具 Tsfresh(TimeSeries Fresh)的使用

2 内容介绍

  • 数据预处理
    • 时间序列数据格式处理
    • 加入时间步特征time
  • 特征工程
    • 时间序列特征构造
    • 特征筛选
    • 使用 tsfresh 进行时间序列特征处理

3 学习代码

# 包导入
import pandas as pd
import numpy as np
import tsfresh as tsf
from tsfresh import extract_features, select_features
from tsfresh.utilities.dataframe_functions import impute
E:\myanaconda\lib\site-packages\statsmodels\tools\_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead.
  import pandas.util.testing as tm
data_train = pd.read_csv("train.csv")
data_test_A = pd.read_csv("testA.csv")
print(data_train.shape)
print(data_test_A.shape)
(100000, 3)
(20000, 2)
data_train.head()
idheartbeat_signalslabel
000.9912297987616655,0.9435330436439665,0.764677...0.0
110.9714822034884503,0.9289687459588268,0.572932...0.0
221.0,0.9591487564065292,0.7013782792997189,0.23...2.0
330.9757952826275774,0.9340884687738161,0.659636...0.0
440.0,0.055816398940721094,0.26129357194994196,0...2.0
data_test_A.head()
idheartbeat_signals
01000000.9915713654170097,1.0,0.6318163407681274,0.13...
11000010.6075533139615096,0.5417083883163654,0.340694...
21000020.9752726292239277,0.6710965234906665,0.686758...
31000030.9956348033996116,0.9170249621481004,0.521096...
41000041.0,0.8879490481178918,0.745564725322326,0.531...
# 将以逗号隔开的心跳信号拆分,整合为新的dataframe
train_heartbeat_df = data_train["heartbeat_signals"].str.split(",", expand=True).stack()
train_heartbeat_df = train_heartbeat_df.reset_index()
train_heartbeat_df.set_index("level_0")
level_10
level_0
000.9912297987616655
010.9435330436439665
020.7646772997256593
030.6185708990212999
040.3796321642826237
.........
999992000.0
999992010.0
999992020.0
999992030.0
999992040.0

20500000 rows × 2 columns

# 对心电特征进行行转列处理,同时为每个心电信号加入时间步特征time
# 将以逗号隔开的心跳信号拆分,整合为新的dataframe,使用stack函数整合为一维的dataframe
train_heartbeat_df = data_train["heartbeat_signals"].str.split(",", expand=True).stack()
# 重新命名列名
train_heartbeat_df = train_heartbeat_df.reset_index()
# 设置新的dataframe的索引为level_0列
train_heartbeat_df = train_heartbeat_df.set_index("level_0")
# 新的索引无命名
train_heartbeat_df.index.name = None
# 重命名列名
train_heartbeat_df.rename(columns={"level_1":"time", 0:"heartbeat_signals"}, inplace=True)
# 设置值的类型
train_heartbeat_df["heartbeat_signals"] = train_heartbeat_df["heartbeat_signals"].astype(float)

train_heartbeat_df
timeheartbeat_signals
000.991230
010.943533
020.764677
030.618571
040.379632
.........
999992000.000000
999992010.000000
999992020.000000
999992030.000000
999992040.000000

20500000 rows × 2 columns

# 将处理后的心电特征加入到训练数据中,同时将训练数据label列单独存储
# 即拼接为带有时间序列的dataframe
data_train_label = data_train["label"]
data_train = data_train.drop("label", axis=1)
data_train = data_train.drop("heartbeat_signals", axis=1)
data_train = data_train.join(train_heartbeat_df)

data_train
idtimeheartbeat_signals
0000.991230
0010.943533
0020.764677
0030.618571
0040.379632
............
99999999992000.000000
99999999992010.000000
99999999992020.000000
99999999992030.000000
99999999992040.000000

20500000 rows × 3 columns

# 查看id为1的时间序列的集合
data_train[data_train["id"]==1]
idtimeheartbeat_signals
1100.971482
1110.928969
1120.572933
1130.178457
1140.122962
............
112000.000000
112010.000000
112020.000000
112030.000000
112040.000000

205 rows × 3 columns

'''
# 通过调用库函数extract_features提取特征
from tsfresh import extract_features

# 特征提取
train_features = extract_features(data_train, column_id='id', column_sort='time')
train_features
'''
"\n# 通过调用库函数extract_features提取特征\nfrom tsfresh import extract_features\n\n# 特征提取\ntrain_features = extract_features(data_train, column_id='id', column_sort='time')\ntrain_features\n"
'''
from tsfresh.utilities.dataframe_functions import impute

# 去除抽取特征中的NaN值
impute(train_features)
'''
'\nfrom tsfresh.utilities.dataframe_functions import impute\n\n# 去除抽取特征中的NaN值\nimpute(train_features)\n'
'''
from tsfresh import select_features

# 按照特征和数据label之间的相关性进行特征选择
train_features_filtered = select_features(train_features, data_train_label)

train_features_filtered
'''
'\nfrom tsfresh import select_features\n\n# 按照特征和数据label之间的相关性进行特征选择\ntrain_features_filtered = select_features(train_features, data_train_label)\n\ntrain_features_filtered\n'

因为机器性能限制,我们未能运行出分类结果。
具体可以参考Task3 特征工程.md

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值