1147. Heaps (30)
In computer science, a heap is a specialized tree-based data structure that satisfies the heap property: if P is a parent node of C, then the key (the value) of P is either greater than or equal to (in a max heap) or less than or equal to (in a min heap) the key of C. A common implementation of a heap is the binary heap, in which the tree is a complete binary tree. (Quoted from Wikipedia at https://en.wikipedia.org/wiki/Heap_(data_structure))
Your job is to tell if a given complete binary tree is a heap.
Input Specification:
Each input file contains one test case. For each case, the first line gives two positive integers: M (<= 100), the number of trees to be tested; and N (1 < N <= 1000), the number of keys in each tree, respectively. Then M lines follow, each contains N distinct integer keys (all in the range of int), which gives the level order traversal sequence of a complete binary tree.
Output Specification:
For each given tree, print in a line "Max Heap" if it is a max heap, or "Min Heap" for a min heap, or "Not Heap" if it is not a heap at all. Then in the next line print the tree's postorder traversal sequence. All the numbers are separated by a space, and there must no extra space at the beginning or the end of the line.
Sample Input:3 8 98 72 86 60 65 12 23 50 8 38 25 58 52 82 70 60 10 28 15 12 34 9 8 56Sample Output:
Max Heap 50 60 65 72 12 23 86 98 Min Heap 60 58 52 38 82 70 25 8 Not Heap 56 12 34 28 9 8 15 10
给出一个层序遍历的树,判断是不是最大堆或者最小堆,最后按后序遍历输出。
输入数据的时候建立二叉树。给出的是层序遍历,那么最后的树除了右下肯定是充满了的,用一个list存储没有右子树的节点地址,每次把新节点接在list最前面的节点上,如果最前面的节点左右子树都有了就pop,即可建立二叉树。
之后思路很清楚的,递归判断,通过返回值判断子树类型,再结合自身节点情况继续向上返回即可,判断过程中可以以后序顺序收集数据,最后输出即可。(后久没做二叉树居然忘记了后序是怎么遍历的了。。。
#include <cstdio>
#include <cstdlib>
#include <list>
#include <vector>
using namespace std;
typedef struct Node *TREE;
typedef struct Node {
int data;
TREE l;
TREE r;
}Node;
int M, N;
int sz[100010];
Node *T;
vector<int>v1;
int isHeap(TREE t) {
if ((!t->l) && (!t->r)) {
v1.push_back(t->data);
return 3;
}
if (!t->r) {
int f = isHeap(t->l);
v1.push_back(t->data);
return t->data > t->l->data ? 1 : 2;
}
if (t->data > t->l->data&&t->data > t->r->data) {
int ll = isHeap(t->l);
int rr = isHeap(t->r);
v1.push_back(t->data);
if (ll == 0 || rr == 0 || ll == 2 || rr == 2)return 0;
return 1;
}
else if (t->data < t->l->data&&t->data < t->r->data) {
int ll = isHeap(t->l);
int rr = isHeap(t->r);
v1.push_back(t->data);
if (ll == 0 || rr == 0 || ll == 1 || rr == 1)return 0;
return 2;
}
else {
int ll = isHeap(t->l);
int rr = isHeap(t->r);
v1.push_back(t->data);
return 0;
}
}
void pf() {
int n = v1.size();
for (int i = 0; i < n; i++) {
printf("%d%c", v1[i], i == n - 1 ? '\n' : ' ');
}
}
void checkk() {
v1.clear();
int f = T->data > T->l->data ? 1 : 2;//0:Not Heap 1:Max Heap 2:Min Heap 3:All
f = isHeap(T);
if (f == 1) {
printf("Max Heap\n");
}
else if (f == 2) {
printf("Min Heap\n");
}
else {
printf("Not Heap\n");
}
pf();
}
int main() {
scanf("%d %d\n", &M, &N);
for (int i = 0; i < M; i++) {
int t;
list<TREE>ls;
TREE rot = NULL;
for (int j = 0; j < N; j++) {
scanf("%d", &t);
TREE tt = (TREE)malloc(sizeof(Node));
tt->data = t;
tt->l = NULL;
tt->r = NULL;
ls.push_back(tt);
if (!rot) {
rot = tt;
}
else {
if ((ls.front())->l) {
(ls.front())->r = tt;
ls.pop_front();
}
else {
(ls.front())->l = tt;
}
}
}
T = rot;
checkk();
}
return 0;
}