【图】最短路径Dijkstra算法和Floyd算法

本文详细介绍了两种经典的最短路径算法:Dijkstra算法和Floyd算法。Dijkstra算法适用于带权有向无环图中求解单源最短路径问题;Floyd算法则可以解决任意两点间的最短路径问题,适用于带权有向图。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、Dijkstra算法

#include<iostream>
using namespace std;

const int maxint = 10000;
class Dij{
public:
	void initial(int m, int n);
	void read_case();
	void dijkstra(int begin, int end);
	void search_path(int begin, int end);// 查找从源点v到终点u的路径,并输出
private:
	int path[101][101];// 图的两点间路径长度
	int distance[101];// 当前点到源点的最短路径长度
	int pre[101];// 记录当前点的前一个结点
	bool visited[101];
	int node_num;// 图的结点数
	int edge_num;// 图的路径数
};
void Dij::initial(int m, int n){
	node_num = m;
	edge_num = n;
	for (int i = 0; i < 101; i++){
		for (int j = 0; j < 101; j++){
			path[i][j] = maxint;
		}
		distance[i] = maxint;
	}
	memset(visited, false, sizeof(visited));
}
void Dij::read_case(){
	int n1, n2, len;
	for (int i = 1; i <= edge_num; i++){
		cin >> n1 >> n2 >> len;
		path[n1][n2] = path[n2][n1] = len;
	}
}
void Dij::dijkstra(int begin, int end){
	int i, j, k;
	for (i = 1; i <= node_num; i++){
		distance[i] = path[begin][i];
		if (distance[i] == maxint)
			pre[i] = 0;
		else
			pre[i] = begin;
	}
	distance[begin] = 0;
	visited[begin] = true;
	for (i = 2; i <= node_num; i++){
		int min = maxint;
		// 找出当前未使用的点j的distance[j]最小值
		for (j = 1; j <= node_num; j++){
			if (distance[j] < min&&!visited[j]){
				k = j;
				min = distance[j];
			}
		}
		// 表示k点已被访问过 
		visited[k] = true;
		// 更新distance[j]
		for (j = 1; j <= node_num; j++){
			if (min + path[k][j] < distance[j] && !visited[j]){
				distance[j] = min + path[k][j];
				pre[j] = k;
			}
		}
	}
	cout << "源点到最后一个顶点的最短路径长度: " << distance[end] << endl;
}
// 查找从源点v到终点u的路径,并输出
void Dij::search_path(int begin, int end){
	int que[101];
	int count = 1;
	que[count] = end;
	count++;
	int tmp = pre[end];
	while (tmp != begin){
		que[count] = tmp;
		count++;
		tmp = pre[tmp];
	}
	que[count] = begin;
	cout << "源点到最后一个顶点的路径为: ";
	for (int i = count; i >= 1; i--)
	if (i != 1)
		cout << que[i] << " -> ";
	else
		cout << que[i] << endl;
}

int main(){
	int n, line;
	Dij x;
	int start, end;
	while (cin >> n >> line){
		x.initial(n, line);
		x.read_case();
		cin >> start >> end;
		x.dijkstra(start, end);
		x.search_path(start, end);
	}
	return 0;
}
二、Floyd算法

#include<iostream>
using namespace std;
const int max_num = 500;//最大城市数
const int max_len = 10000;//两城市间路径长度最大不超过10000
class Street{
public:
    void init(int n, int m);
    void read_case();
    void floyd();
    void search_path();
private:
    int city[max_num][max_num];//路径权重数组  
    int path[max_num][max_num];//保存最短路径数组,记录前继  
    int city_num;//城市数
    int road_num;//城市间路径数
    int start;
    int end;
};
void Street::init(int n, int m){
    city_num = n;
    road_num = m;
    for (int i = 0; i < max_num; i++){
        for (int j = 0; j < max_num; j++){
            if (i == j)
                city[i][j] = 0;//注意自己对自己长度必须设为0
            else
                city[i][j] = max_len;
            path[i][j] = j;
        }
    }
}
void Street::read_case(){
    int c1, c2, len;
    for (int i = 0; i < road_num; i++){
        cin >> c1 >> c2 >> len;
        city[c1][c2] = city[c2][c1] = len;
    }
    cin >> start >> end;
}
void Street::floyd(){
    for (int k = 0; k < road_num; k++){
        for (int i = 0; i < road_num; i++){
            for (int j = 0; j < road_num; j++){
                if (city[i][k] + city[k][j] < city[i][j]){
                    city[i][j] = city[i][k] + city[k][j];
                    path[i][j] = path[i][k];
                }
            }
        }
    }
    cout << city[start][end] << endl;
}
void Street::search_path(){
    int k = path[start][end];
    cout << start;
    while (k != end){
        cout << " -> " << k;
        k = path[k][end];
    }
    cout << " -> " << end << endl;
}

int main(){
    int n, m;
    Street s;
    while (cin >> n >> m){
        s.init(n, m);
        s.read_case();
        s.floyd();
        s.search_path();
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值