【查找】二分查找、插值查找、斐波那契查找

本文详细介绍了二分查找、插值查找及斐波那契查找三种高效搜索算法的实现原理及C++代码示例,适用于有序数组的数据搜索场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include<iostream>
using namespace std;

int binary_search(int* data, int n, int key){
	int low, high, mid;
	low = 0;
	high = n-1;
	while (low <= high){
		mid = low + (high - low) / 2;
		if (key < data[mid])
			high = mid - 1;
		else if (key>data[mid])
			low = mid + 1;
		else
			return mid;
	}
	return -1;
}

int interpolation_search(int* data, int n, int key){
	int low, high, mid;
	low = 0;
	high = n - 1;
	while (low <= high){
		mid = low + (key - data[low]) / (data[high] - data[low])*(high - low);
		if (key < data[mid])
			high = mid - 1;
		else if (key>data[mid])
			low = mid + 1;
		else
			return mid;
	}
	return -1;
}

void fibonacci(int* f){
	f[0] = 0;
	f[1] = 1;
	for (int i = 2; i < 20; i++)
		f[i] = f[i - 1] + f[i - 2];
}
int fibonacci_search(int* data, int n, int key){
	int low, high, mid, k;
	low = 0;
	high = n - 1;
	k = 0;

	int F[20];
	fibonacci(F);

	while (n > F[k] - 1)//计算n位于斐波那契数列的位置
		k++;

	int* temp = new int[F[k] - 1];
	memcpy(temp, data, sizeof(int)*n);
	for (int i = n; i < F[k] - 1; i++)//将不满的数值补全
		temp[i] = data[n-1];

	while (low <= high){
		mid = low + F[k - 1] - 1;
		if (key < temp[mid]){
			high = mid - 1;
			k = k - 1;
		}
		else if (key > temp[mid]){
			low = mid + 1;
			k = k - 2;
		}
		else
		{
			delete[] temp;
			if (mid < n)
				return mid;
			else
				return -1;
		}
	}
	delete[] temp;
	return -1;
}

int main(){
	int nums[] = { 0,1,16,24,35,47,59,62,73,88,99 };
	int len = sizeof(nums) / sizeof(int);
	cout << binary_search(nums, len, 88) << endl;

	cout << interpolation_search(nums, len, 88) << endl;

	cout << fibonacci_search(nums, len, 88) << endl;

	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值