tensorlfow2.0 模型保存和导入

本文详细介绍了如何使用Keras框架保存和加载机器学习模型,包括整个模型的保存、权重保存以及子类模型的保存方法。通过不同格式的保存选项,如HDF5和TensorFlow SavedModel格式,确保模型架构、权重、训练配置和优化器状态得以完整保留,以便后续恢复训练或预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

whole-model_saving(整个模型保存)

You can save a model built with the Functional API into a single file. You can later recreate the same model from this file, even if you no longer have access to the code that created the model.

This file includes:

The model’s architecture
The model’s weight values (which were learned during training)
The model’s training config (what you passed to compile), if any
The optimizer and its state, if any (this enables you to restart training where you left)
a Functional model or a Sequential model的保存方式

# Save the model
model.save('path_to_my_model.h5')

# Recreate the exact same model purely from the file
new_model = keras.models.load_model('path_to_my_model.h5')

import numpy as np

# Check that the state is preserved
new_predictions = new_model.predict(x_test)
np.testing.assert_allclose(predictions, new_predictions, rtol=1e-6, atol=1e-6)

# Note that the optimizer state is preserved as well:
# you can resume training where you left off.

NotImplementedError: Saving the model to HDF5 format requires the model to be a Functional model or a Sequential model. It does not work for subclassed models, because such models are defined via the body of a Python method, which isn’t safely serializable. Consider saving to the Tensorflow SavedModel format (by setting save_format=“tf”) or using save_weights.

Second approach is by using model.save to save whole model and by using load_model to restore previously stored subclassed model. The following code snippets describe how to implement them.

# Save the model
model.save('path_to_my_model',save_format='tf')

# Recreate the exact same model purely from the file
new_model = keras.models.load_model('path_to_my_model')

subclass 的模型保存

Third approach is by using tf.saved_model.save. This is equivalent to the tf format in model.save. You can once again call load_model to restore the previously saved subclassed model. The following code snippets describe how to implement them.

# Save the model
tf.saved_model.save(model,'my_saved_model')
# Restoring the model
restored_saved_model = keras.models.load_model('my_saved_model')
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值