118. Distinct Subsequences
中文English
Given two strings S and T. Count the number of distinct subsequences of S which equals T.
A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters. (ie, "ACE" is a subsequence of "ABCDE" while "AEC" is not)
Example
Example 1:
Input: S = "rabbbit", T = "rabbit"
Output: 3
Explanation: You could remove any 'b' in S, so there are 3 ways to get T.
Example 2:
Input: S = "abcd", T = ""
Output: 1
Explanation: There is only 1 way to get T - remove all chars in S.
Challenge
Do it in O(n^2 time and O(n) memory.
O(n^2n) memory is also acceptable if you do not know how to optimize memory.
Input test data (one parameter per line)How to understand a testcase?
解法1:DP
关键思路:S[i] vs T[j]。因为不管怎么样,我们可以丢弃掉S[i],这样问题可以简化到S[i-1] vs T[j]。
而当S[i-1]==T[j-1]时,我们还可以将问题简化到S[i-1] vs T[j-1]。
代码如下:
class Solution {
public:
/**
* @param S: A string
* @param T: A string
* @return: Count the number of distinct subsequences
*/
int numDistinct(string &S, string &T) {
int M = S.size();
int N = T.size();
if (M == 0 || M < N) return 0;
vector<vector<int>> dp(M + 1, vector<int>(N + 1, 0));
for (int i = 0; i <= M; ++i) {
dp[i][0] = 1; //delete any char can get empty
}
for (int i = 1; i <= M; ++i) {
for (int j = 1; j <= N; ++j) {
dp[i][j] = dp[i - 1][j];
if (S[i - 1] == T[j - 1]) {
dp[i][j] += dp[i - 1][j - 1];
}
}
}
return dp[M][N];
}
};
博客围绕118. Distinct Subsequences问题展开,介绍了计算字符串S中等于字符串T的不同子序列数量的问题,给出示例和挑战要求,需在O(n^2)时间和O(n)内存完成,还给出了使用动态规划(DP)的解法思路及代码。
332

被折叠的 条评论
为什么被折叠?



