LintCode 1126: Merge Two Binary Trees (二叉树经典题)

本文介绍了一种将两棵二叉树合并成一棵新二叉树的算法,当两个节点重叠时,新节点的值为其和。通过递归方式处理根节点及左右子树,实现了树的完全合并。
  1. Merge Two Binary Trees
    Given two binary trees and imagine that when you put one of them to cover the other, some nodes of the two trees are overlapped while the others are not.

You need to merge them into a new binary tree. The merge rule is that if two nodes overlap, then sum node values up as the new value of the merged node. Otherwise, the NOT null node will be used as the node of new tree.

Example
Input:
Tree 1 Tree 2
1 2
/ \ / \
3 2 1 3
/ \ \
5 4 7
Output:
Merged tree:
3
/
4 5
/ \ \
5 4 7
Notice
The merging process must start from the root nodes of both trees.

思路:
二叉树递归。
注意:

  1. Tree * node = NULL; //记得这里要初始化为NULL, 否则当t1, t2都是NULL时,返回unknown。
    代码如下:
/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */

class Solution {
public:
    /**
     * @param t1: the root of the first tree
     * @param t2: the root of the second tree
     * @return: the new binary tree after merge
     */
    TreeNode * mergeTrees(TreeNode * t1, TreeNode * t2) {
        TreeNode * node = NULL;
        if (t1 && t2) {
            node = new TreeNode(t1->val + t2->val);
            node->left = mergeTrees(t1->left, t2->left);
            node->right = mergeTrees(t1->right, t2->right);
        } else if (t1 && !t2) {
            node = new TreeNode(t1->val);
            node->left = mergeTrees(t1->left, NULL);
            node->right = mergeTrees(t1->right, NULL);
        } else if (!t1 && t2) {
            node = new TreeNode(t2->val);
            node->left = mergeTrees(NULL, t2->left);
            node->right = mergeTrees(NULL, t2->right);
        }     
        return node;
    }
};

二刷:

/**
 * Definition of TreeNode:
 * class TreeNode {
 * public:
 *     int val;
 *     TreeNode *left, *right;
 *     TreeNode(int val) {
 *         this->val = val;
 *         this->left = this->right = NULL;
 *     }
 * }
 */

class Solution {
public:
    /**
     * @param t1: the root of the first tree
     * @param t2: the root of the second tree
     * @return: the new binary tree after merge
     */
    TreeNode* mergeTrees(TreeNode *t1, TreeNode *t2) {
        if (!t1 && !t2) return NULL;
        TreeNode *newNode = NULL;
        if (!t1) {
            newNode = new TreeNode(t2->val);
        } else if (!t2) {
            newNode = new TreeNode(t1->val);
        } else {
            newNode = new TreeNode(t1->val + t2->val);
        }
        newNode->left = mergeTrees(t1 ? t1->left : NULL, t2 ? t2->left : NULL);
        newNode->right = mergeTrees(t1 ? t1->right : NULL, t2 ? t2->right : NULL);
        return newNode;
    }
};
使用雅可比椭圆函数为Reissner平面有限应变梁提供封闭形式解(Matlab代码实现)内容概要:本文介绍了如何使用雅可比椭圆函数为Reissner平面有限应变梁问提供封闭形式的解析解,并结合Matlab代码实现该求解过程。该方法能够精确描述梁在大变形条件下的非线性力学行为,适用于几何非线性强、传统线性理论失效的工程场景。文中详细阐述了数学建模过程,包括基本假设、控制方程推导以及利用雅可比椭圆函数进行积分求解的技术路线,最后通过Matlab编程验证了解的准确性与有效性。; 适合人群:具备一定固体力学、非线性结构分析基础,熟悉Matlab编程的研究生、博士生及科研人员,尤其适合从事结构力学、航空航天、土木工程等领域中大变形问研究的专业人士; 使用场景及目标:① 掌握Reissner梁理论在有限应变条件下的数学建模方法;② 学习雅可比椭圆函数在非线性微分方程求解中的实际应用技巧;③ 借助Matlab实现复杂力学问的符号计算与数值验证,提升理论与仿真结合能力; 阅读建议:建议读者在学习前复习弹性力学与非线性梁理论基础知识,重点关注控制方程的推导逻辑与边界条件的处理方式,同时动手运行并调试所提供的Matlab代码,深入理解椭圆函数库的调用方法与结果可视化流程,以达到理论与实践深度融合的目的。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值