[ZZ]为什么开发者不能准确估计开发时间

本文探讨了软件开发中无法精确估计任务时间的原因,指出其本质在于创造新知识的过程。通过引用《Principles of Product Development Flow》等著作,文章提供了关于流程管理和时间预测的见解,并分享了一个实际项目的开发时间数据。此外,讨论了估计时间的常见问题,如估算膨胀、不可预知性以及团队完成任务的时间是否提前等问题。

Why Can't Developers Estimate Time?

A few interesting points came up on a mailing list thread I was involved in. Here are a few of them. The original comments are presented as sub-headers / quoted blocks, with my response below. This isn't a thorough look at the issues involved, but what I thought were relevant responses. Note: I've done some editing to improve the flow and to clarify a few things.

Why can't developers estimate time?

We can't estimate the time for any individual task in software development because the nature of the work is creating new knowledge.

The goal of software development is to automate processes. Once a process is automated, it can be run repeatedly, and in most cases, in a predictable time. Source code is like a manufacturing blueprint, the computer is like a manufacturing plant, the inputs (data) are like raw materials, and the outputs (data) are like finished goods. To use another analogy, the reason Starbucks makes drinks so quickly and repeatably is because they invested a lot of time in the design of the process, which was (and is, ongoing) a complex and expensive task. Individual Starbucks franchises don't have to re-discover this process, they just buy the blueprint. I'll leave it as an exercise to the reader to infer my opinion of the Costa coffee-making process.

It's not actually always a problem that development time is unpredictable, because the flipside is that so is the value returned. A successful piece of software can make or save vastly more than its cost. Tom DeMarco argues for focussing on the high value projects for exactly this reason. Note that this does require a value-generation mindset, rather than the currently-prevalent cost-control mindset. This is a non-trivial problem.

By far the best explanation I've read of variability and how to exploit it for value is Don Reinertsen's Principles of Product Development Flow, which is pretty much the adopted "PatchSpace Bible" for day-to-day process management. And when I say "by far the best", I mean by an order of magnitude above pretty much everything else I've read, apart from the Theory of Constraints literature.

Here is the data from my last development project. (Histogram generated in R with 5-hour buckets: the horizontal axis shows the duration in hours for the user stories - 0-5 hours, 5-10 hours, etc; the vertical axis is the number of stories that took that duration). We worked in 90 minute intervals and journaled the work on Wave, so we knew task durations to a pretty fine resolution. (We did this for both client communication and billing purposes.) The result: our development times were about as predictable as radioactive decay, but they were very consistently radioactive. Correlation with estimates was so poor I refused to estimate individual tasks, as it would have been wilfully misleading, but we had enough data to make sensible aggregates.

 

Stories_dev_time_histogram

 

Rule of thumb: take the estimates of a developer, double it and add a bit

The double-and-add-a-bit rule is interesting. When managers do this, how often are tasks completed early? We generally pay much more attention to overruns than underruns. If a team is not completing half of its tasks early, it is padding the estimates, and that means trading development cycle time for project schedule. Cycle time is usually much more valuable than predictability, as it means getting to market sooner. Again, see Reinertsen's work, the numbers can come out an order of magnitude apart.

Also, this is the basis for Critical Chain project management, which halves the "safe" estimates to condense the timescale, and puts the remaining time (padding on individual tasks) at the end, as a "project buffer". This means that Parkinson's Law doesn't cause individual tasks to expand unduly. I'm unconvinced that Critical Chain is an appropriate method for software though, as the actual content of development work can change significantly, as feedback and learning improves the plan.

People in general just make shit up

It's not just developers that are bad with estimates either. Everyone at some point is just winging it because it's something they've never done before and won't be able to successfully make a judgement until they have.

 

As a community we need to get away from this. If we don't know, we don't know, and we need to say it. Clients who see regular progress on tasks they were made aware were risky (and chose to invest in) have much more trust in their team than clients whose teams make shit up. It's true! Srsly. Don't just take my word for it, though - read David Anderson's Kanban.

 

Estimating is a very important skill and should be taught more in junior dev roles

I propose an alternative: what we need to do is teach to junior devs the meaning of done. If estimation problems are bad enough, finding out at some indeterminate point in the future that something went out unfinished (possibly in a rush to meet a commitment … I mean - estimate!) blows not only that estimate out of the water, but the schedule of all the current work in process too. This is very common, and can cause a significant loss of a development team's capacity.

当前,全球经济格局深刻调整,数字化浪潮席卷各行各业,智能物流作为现代物流发展的必然趋势和关键支撑,正迎来前所未有的发展机遇。以人工智能、物联网、大数据、云计算、区块链等前沿信息技术的快速迭代与深度融合为驱动,智能物流不再是传统物流的简单技术叠加,而是正在经历一场从自动化向智能化、从被动响应向主动预测、从信息孤岛向全面互联的深刻变革。展望2025年,智能物流系统将不再局限于提升效率、降低成本的基本目标,而是要构建一个感知更全面、决策更精准、执行更高效、协同更顺畅的智慧运行体系。这要求我们必须超越传统思维定式,以系统化、前瞻性的视角,全面规划和实施智能物流系统的建设。本实施方案正是基于对行业发展趋势的深刻洞察和对未来需求的精准把握而制定。我们的核心目标在于:通过构建一个集成了先进感知技术、大数据分析引擎、智能决策算法和高效协同平台的综合智能物流系统,实现物流全链路的可视化、透明化和智能化管理。这不仅是技术层面的革新,更是管理模式和服务能力的全面提升。本方案旨在明确系统建设的战略方向、关键任务、技术路径和实施步骤,确保通过系统化部署,有效应对日益复杂的供应链环境,提升整体物流韧性,优化资源配置效率,降低运营成本,并最终为客户创造更卓越的价值体验。我们致力于通过本方案的实施,引领智能物流迈向更高水平,为构建现代化经济体系、推动高质量发展提供强有力的物流保障。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值