web terminal - 如何在mac os上运行gotty

文章介绍了如何在MacOS遇到问题后,通过在Docker中使用CentOS镜像并安装必要的依赖(如Git、Golang和gotty),实现Web浏览器与服务器的bash交互。具体步骤包括获取gotty、配置yum源、安装依赖并启动gotty服务。
  • gotty可以让你使用web terminal的方式与环境进行交互,实现终端效果

  • 假设你已经配置好了go环境,首先使用go get github.com/yudai/gotty命令获取可执行文件,默认会安装在$GOPATH/bin这个目录下,注意如果你的go版本比较高,需要关闭GO111MODULE,使用go env -w GO111MODULE=off将其关闭

  • 我在 macos下运行这个项目,连接总是异常关闭,所以改为使用Linux系统

  • 使用docker下载一个centos镜像,然后docker run -p 8080:8080 -it centos /bin/bash,因为这个项目默认开放的端口是8080

  • 之后就是yum安装一些依赖,按照下面的命令安装

cd /etc/yum.repos.d/
sed -i 's/mirrorlist/#mirrorlist/g' /etc/yum.repos.d/CentOS-*
sed -i 's|#baseurl=http://mirror.centos.org|baseurl=http://vault.centos.org|g' /etc/yum.repos.d/CentOS-*
yum install git
yum install golang
go get github.com/yudai/gotty
  • 之后我们进入默认安装位置,使用./gotty -w bash,可以实现浏览器与服务器进行bash交互,如下图
    在这里插入图片描述
【EI复现】基于深度强化学习的微能源网能量管理与优化策略研究(Python代码实现)内容概要:本文围绕“基于深度强化学习的微能源网能量管理与优化策略”展开研究,重点利用深度Q网络(DQN)等深度强化学习算法对微能源网中的能量调度进行建模与优化,旨在应对可再生能源出力波动、负荷变化及运行成本等问题。文中结合Python代码实现,构建了包含光伏、储能、负荷等元素的微能源网模型,通过强化学习智能体动态决策能量分配策略,实现经济性、稳定性和能效的多重优化目标,并可能与其他优化算法进行对比分析以验证有效性。研究属于电力系统与人工智能交叉领域,具有较强的工程应用背景和学术参考价值。; 适合人群:具备一定Python编程基础和机器学习基础知识,从事电力系统、能源互联网、智能优化等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①学习如何将深度强化学习应用于微能源网的能量管理;②掌握DQN等算法在实际能源系统调度中的建模与实现方法;③为相关课题研究或项目开发提供代码参考和技术思路。; 阅读建议:建议读者结合提供的Python代码进行实践操作,理解环境建模、状态空间、动作空间及奖励函数的设计逻辑,同时可扩展学习其他强化学习算法在能源系统中的应用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Clarence Liu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值