深度学习:图像分类、GAN与迁移学习
1. 图像分类模型及效果
在图像分类任务中,我们使用了一些预训练的深度神经网络(DNN)模型进行图像预测。以下是具体的代码实现:
x <- image_to_array(img)
x <- array_reshape(x, c(1, dim(x)))
x <- imagenet_preprocess_input(x)
# Model 1: resnet50
model_resnet50 <- application_resnet50(weights = 'imagenet')
preds_resnet50 <- model_resnet50 %>% predict(x)
imagenet_decode_predictions(preds_resnet50, top = 10)
# Model2: VGG19
model_vgg19 <- application_vgg19(weights = 'imagenet')
preds_vgg19 <- model_vgg19 %>% predict(x)
imagenet_decode_predictions(preds_vgg19, top = 10)[[1]]
# Model 3: VGG16
model_vgg16 <- application_vgg16(weights = 'imagenet')
preds_vgg16 <- model_vgg16 %>% predict(x)
imagenet_decode_predictions(preds_vgg16, top = 10)[[
超级会员免费看
订阅专栏 解锁全文
3976

被折叠的 条评论
为什么被折叠?



