背景
NL-to-SQL(自然语言到结构化查询语言)任务是自然语言处理(NLP)领域的一个难题。 它涉及将自然语言问题转换为 SQL 查询,然后可以针对关系数据库执行该查询来回答问题。 该任务是 NLP 中的一个专门子领域,与更广泛的自然语言理解 (NLU) 领域以及自然语言与数据库之间的接口 (NLIDB) 密切相关。
随着 GPT-4、Llama2 和 Falcon 等大型语言模型 (LLM) 开发的最新进展,业界和学术界对 NL 到 SQL 的关注已经转向利用这些 LLM 为现实世界生成 SQL 用例。 这将非常强大,因为它允许非技术用户直接从数据中找到见解。
在 Dataherald,我们构建了一个开源自然语言到 SQL 引擎,可与不同的 LLM 一起使用,尽管我们在企业部署中使用 GPT-4-32K。 当前 NL 到 SQL(例如 DAIL-SQL、C3 和 DIN-SQL)的最先进研究也使用闭源 LLM,例如 GPT-4 和 GPT-3.5-turbo。 这些模型既昂贵又引发了企业的数据隐私问题。 因此,我们开始研究 Llama2 和 Mistral 等开源LLMS如何与 OpenAI 的模型相比较。 以下是我们的结果。
开源的大语言模型
在这篇博文中,我们将探讨各个系列的开源 LLM(大型语言模型)的功能。 这里分享的信息来自最近的三篇论文,即大型语言模型之战、大型语言模型支持的文本到SQL、文本到SQL的分解上下文学习以及我们自己进行的内部测试 使用 Google Colab A100 GPU。
涉及的模型列表如下:
- Llama-7B
- Llama-33B
- MISTRAL-7B
- Alpaca-7B
- Llama-2-CHAT-7