【Elasticsearch】分桶聚合功能概述

这些聚合功能可以根据它们的作用和应用场景分为几大类,以下是分类后的结果:

1.基础聚合(Basic Aggregations)

• Terms(字段聚合)

根据字段值对数据进行分组并统计。

例子:按产品类别统计销售数量。

• Histogram(直方图)

将数值数据分桶并统计每个桶内的数据数量。

例子:按年龄区间统计用户数量。

• Date histogram(日期直方图)

按固定时间间隔对日期数据进行分桶并统计。

例子:按月统计用户注册数量。

• Range(范围聚合)

根据数值范围对数据进行分桶并统计。

例子:按价格区间统计商品数量。

• Missing(缺失值)

统计缺失字段的数据。

例子:统计用户未填写地址的数量。

• Global(全局聚合)

对整个数据集进行全局统计。

例子:计算总销售额。

2.时间序列聚合(Time Series Aggregations)

• Date histogram(日期直方图)

按固定时间间隔对日期数据进行分桶并统计。

例子:按月统计用户注册数量。

• Auto-interval date histogram(自动间隔日期直方图)

根据数据的时间分布自动划分时间间隔,并生成直方图。

例子:分析网站访问日志,自动按小时或天生成访问量直方图。

• Time series(时间序列)

按时间顺序对数据进行聚合和分析,常用于趋势分析和预测。

例子:分析股票价格的时间序列变化。

3.地理聚合(Geospatial Aggregations)

• Geo-distance(地理距离)

根据地理坐标计算距离。

例子:计算用户与最近的门店之间的距离。

• Geohash grid(Geohash网格)

使用Geohash算法将地理区域划分为网格,并统计网格内的数据。

例子:统计不同地区的用户分布。

• Geohex grid(Geohex网格)

使用Geohex算法划分地理区域并统计数据。

例子:分析城市中不同区域的交通流量。

• Geotile grid(地理瓦片网格)

使用地理瓦片技术划分区域并统计数据。

例子:分析全球范围内的气象数据分布。

4.文本和分类聚合(Text and Categorization Aggregations)

• Categorize text(文本分类)

将文本数据归类到预定义的类别中。

例子:将新闻文章分类为体育、财经、娱乐等。

• Significant terms(显著项聚合)

找出数据中显著的项,通常用于文本分析,识别重要或异常的关键词。

例子:分析用户评论,找出显著的负面或正面词汇。

• Significant text(显著文本聚合)

找出

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值