概率论与数理统计(五)

离散型的数学期望

P(X=xk)=PkP(X=x_k)=P_kP(X=xk)=Pk,若 ∑k=1∞xkPk\sum\limits_{k=1}^{\infty} x_kP_kk=1xkPk 绝对收敛,那么 E(X)=∑k=1∞xkPkE(X)=\sum\limits_{k=1}^{\infty} x_kP_kE(X)=k=1xkPk

连续型的数学期望

随机变量 XXX,其概率密度函数为 f(x)f(x)f(x),若 ∫−∞+∞xf(x)dx\int_{-\infty}^{+\infty}xf(x)dx+xf(x)dx 绝对收敛,则:

E(X)=∫−∞+∞xf(x)dx E(X) = \int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

随机变量函数的期望

设随机变量 XXX,若 Y=g(X)Y = g(X)Y=g(X)

那么对于离散型,有:

E(Y)=∑g(xi)Pi E(Y) = \sum g(x_i)P_i E(Y)=g(xi)Pi

对于连续型,有:

∫−∞+∞g(x)f(x)dx \int_{-\infty}^{+\infty}g(x)f(x)dx +g(x)f(x)dx

对于二维随机变量函数 Z=g(X,Y)Z=g(X,Y)Z=g(X,Y) 的期望如下

对于离散型:

E(Z)=∑i∑jg(xi,yj)Pij E(Z) = \sum_{i}\sum_{j}g(x_i,y_j)P_{ij} E(Z)=ijg(xi,yj)Pij

对于连续型:

E(Z)=∫−∞+∞∫−∞+∞g(x,y)f(x,y)dxdy E(Z) = \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy E(Z)=++g(x,y)f(x,y)dxdy

数学期望的性质

1、对于常数 ccc 有:E(c)=cE(c) = cE(c)=c

2、E(X+c)=E(X)+cE(X + c) = E(X) + cE(X+c)=E(X)+c

证明:

E(X+c)=∫−∞+∞(x+c)f(x)dx=∫−∞+∞xf(x)dx+c∫−∞+∞f(x)dx=E(X)+c⋅1 \begin{align*} E(X+c) &= \int_{-\infty}^{+\infty}(x+c)f(x)dx \\ &= \int_{-\infty}^{+\infty}xf(x)dx + c\int_{-\infty}^{+\infty}f(x)dx \\ &= E(X) + c \cdot 1 \end{align*} E(X+c)=+(x+c)f(x)dx=+xf(x)dx+c+f(x)dx=E(X)+c1

3、E(cX)=cE(X)E(cX) = cE(X)E(cX)=cE(X)

证明:

E(cX)=∫−∞+∞(cx)f(x)dx=c∫−∞+∞xf(x)dx=cE(X) \begin{align*} E(cX) &= \int_{-\infty}^{+\infty}(cx)f(x)dx \\ &= c\int_{-\infty}^{+\infty}xf(x)dx\\ &= cE(X) \end{align*} E(cX)=+(cx)f(x)dx=c+xf(x)dx=cE(X)

4、E(X±Y)=E(X)±E(Y)E(X \pm Y) = E(X) \pm E(Y)E(X±Y)=E(X)±E(Y)

证明:

E(X±Y)=∫−∞+∞∫−∞+∞(x±y)f(x,y)dxdy=∫−∞+∞∫−∞+∞xf(x,y)dxdy±∫−∞+∞∫−∞+∞yf(x,y)dxdy=∫−∞+∞xdx[∫−∞+∞f(x,y)dy]±∫−∞+∞ydy[∫−∞+∞f(x,y)dx]=∫−∞+∞xfX(x)dx+∫−∞+∞yfY(y)dy=E(X)±E(Y) \begin{align*} E(X \pm Y) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} (x\pm y)f(x,y)dxdy \\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xf(x,y)dxdy \pm \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} yf(x,y)dxdy\\ &= \int_{-\infty}^{+\infty}xdx\left[\int_{-\infty}^{+\infty} f(x,y)dy\right] \pm \int_{-\infty}^{+\infty}ydy\left[\int_{-\infty}^{+\infty} f(x,y)dx\right]\\ &= \int_{-\infty}^{+\infty}xf_X(x)dx + \int_{-\infty}^{+\infty}yf_Y(y)dy \\ &=E(X) \pm E(Y) \end{align*} E(X±Y)=++(x±y)f(x,y)dxdy=++xf(x,y)dxdy±++yf(x,y)dxdy=+xdx[+f(x,y)dy]±+ydy[+f(x,y)dx]=+xfX(x)dx++yfY(y)dy=E(X)±E(Y)

5、若 X,YX,YX,Y 独立,E(XY)=E(X)E(Y)E(XY) = E(X)E(Y)E(XY)=E(X)E(Y)

证明:

E(XY)=∫−∞+∞∫−∞+∞xyf(x,y)dxdy=∫−∞+∞∫−∞+∞xyfX(x)fY(y)dxdy=(∫−∞+∞xfX(x)dx)(∫−∞+∞yfY(y)dy)=E(X)E(Y) \begin{align*} E(XY) &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xyf(x,y)dxdy \\ &= \int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty} xyf_X(x)f_Y(y)dxdy\\ &= \left(\int_{-\infty}^{+\infty}xf_X(x)dx\right)\left(\int_{-\infty}^{+\infty} yf_Y(y)dy\right)\\ &= E(X)E(Y) \end{align*} E(XY)=++xyf(x,y)dxdy=++xyfX(x)fY(y)dxdy=(+xfX(x)dx)(+yfY(y)dy)=E(X)E(Y)

条件期望

定义:一个变量取了某个值的前提下,另一个变量的期望,称为条件期望

1、离散型:

E(X ∣ Y=yj)=∑xiP(X=xi ∣ Y=yj) E(X \ | \ Y = y_j) = \sum x_iP(X=x_i \ | \ Y = y_j) E(X  Y=yj)=xiP(X=xi  Y=yj)

2、连续型:

E(X ∣ Y=y)=∫−∞+∞xf(x ∣ y)dx E(X \ | \ Y = y) = \int_{-\infty}^{+\infty}xf(x \ | \ y)dx E(X  Y=y)=+xf(x  y)dx

方差的定义

定义:描述随机变量相对于期望的偏离程度

D(X)=E([X−E(X)]2) D(X) = E([X-E(X)]^2) D(X)=E([XE(X)]2)

为了将量纲统一,定义标准差 D(X)\sqrt{D(X)}D(X)

离散型:D(X)=∑k(xk−E(X))2PkD(X) = \sum\limits_k(x_k-E(X))^2P_kD(X)=k(xkE(X))2Pk

连续型:D(X)=∫−∞+∞(X−E(X))2f(x)dxD(X) = \int_{-\infty}^{+\infty}(X-E(X))^2f(x)dxD(X)=+(XE(X))2f(x)dx

定理:D(X)=E(X2)−(E(X))2D(X) = E(X^2)-(E(X))^2D(X)=E(X2)(E(X))2

证明:

D(X)=E([X−E(X)]2)=E(X2−2XE(X)+E(X)2)=E(X2)−E(2XE(X))+E(E(X)2)=E(X2)−2E(X)2+E(X)2=E(X2)−E(X)2 \begin{align*} D(X) &= E([X-E(X)]^2) \\ &= E(X^2-2XE(X)+E(X)^2) \\ &= E(X^2) -E(2XE(X))+E(E(X)^2) \\ &= E(X^2)-2E(X)^2+E(X)^2 \\ &= E(X^2)-E(X)^2 \end{align*} D(X)=E([XE(X)]2)=E(X22XE(X)+E(X)2)=E(X2)E(2XE(X))+E(E(X)2)=E(X2)2E(X)2+E(X)2=E(X2)E(X)2

方差的性质

1、D(c)=0D(c) = 0D(c)=0

证明:

D(c)=E(c2)−(E(c))2=c2−c2=0 D(c) = E(c^2)-(E(c))^2 = c^2-c^2 = 0 D(c)=E(c2)(E(c))2=c2c2=0

2、D(X+c)=D(X)D(X+c)=D(X)D(X+c)=D(X)

证明:

D(X+c)=E([X+c−E(X+c)]2)=E([X+c−E(X)−c]2)=E([X−E(X)]2)=D(X) \begin{align*} D(X+c) &= E([X+c-E(X+c)]^2) \\ &= E([X+c-E(X)-c]^2)\\ &= E([X-E(X)]^2) \\ &= D(X) \end{align*} D(X+c)=E([X+cE(X+c)]2)=E([X+cE(X)c]2)=E([XE(X)]2)=D(X)

3、D(cX)=c2D(X)D(cX) = c^2D(X)D(cX)=c2D(X)

证明:

D(cX)=E([cX−E(cX)]2)=E([cX−cE(X)]2)=c2E([X−E(X)]2)=c2D(X) \begin{align*} D(cX) &= E([cX-E(cX)]^2) \\ &= E([cX-cE(X)]^2) \\ &= c^2E([X-E(X)]^2)\\ &=c^2D(X) \end{align*} D(cX)=E([cXE(cX)]2)=E([cXcE(X)]2)=c2E([XE(X)]2)=c2D(X)

4、若 X,YX,YX,Y 相互独立,那么 D(X±Y)=D(X)+D(Y)D(X \pm Y) = D(X)+D(Y)D(X±Y)=D(X)+D(Y)

证明:

D(X±Y)=E([X±Y−E(X±Y)]2)=E([X±Y−E(X)∓E(Y)]2)=E([(X−E(X)±(Y−E(Y)))]2)=E([X−E(X)]2+2[X−E(X)][Y−E(Y)]+[Y−E(Y)]2)=E([X−E(X)]2)+E([Y−E(Y)]2)±2E([X−E(X)][Y−E(Y)]) \begin{align*} D(X\pm Y) &= E([X\pm Y -E(X\pm Y)]^2) \\ &= E([X\pm Y -E(X)\mp E(Y)]^2) \\ &= E([(X-E(X)\pm(Y-E(Y)))]^2) \\ &= E([X-E(X)]^2+2[X-E(X)][Y-E(Y)] + [Y-E(Y)]^2) \\ &= E([X-E(X)]^2)+E([Y-E(Y)]^2)\pm 2E([X-E(X)][Y-E(Y)])\\ \end{align*} D(X±Y)=E([X±YE(X±Y)]2)=E([X±YE(X)E(Y)]2)=E([(XE(X)±(YE(Y)))]2)=E([XE(X)]2+2[XE(X)][YE(Y)]+[YE(Y)]2)=E([XE(X)]2)+E([YE(Y)]2)±2E([XE(X)][YE(Y)])

下证 E([X−E(X)][Y−E(Y)])=0E([X-E(X)][Y-E(Y)]) = 0E([XE(X)][YE(Y)])=0

E([X−E(X)][Y−E(Y)])=E(XY−XE(Y)−YE(X)+E(X)E(Y))=E(X)E(Y)−E(Y)E(X)−E(X)E(Y)+E(X)E(Y)=0 \begin{align*} E([X-E(X)][Y-E(Y)]) &= E(XY-XE(Y)-YE(X)+E(X)E(Y)) \\ &= E(X)E(Y)-E(Y)E(X)-E(X)E(Y)+E(X)E(Y) \\ &=0 \end{align*} E([XE(X)][YE(Y)])=E(XYXE(Y)YE(X)+E(X)E(Y))=E(X)E(Y)E(Y)E(X)E(X)E(Y)+E(X)E(Y)=0

故:

D(X±Y)=E([X−E(X)]2)+E([Y−E(Y)]2)±2E([X−E(X)][Y−E(Y)])=E([X−E(X)]2)+E([Y−E(Y)]2)=D(X)+D(Y) \begin{align*} D(X\pm Y) &= E([X-E(X)]^2)+E([Y-E(Y)]^2)\pm 2E([X-E(X)][Y-E(Y)])\\ &= E([X-E(X)]^2)+E([Y-E(Y)]^2)\\ &= D(X) + D(Y) \end{align*} D(X±Y)=E([XE(X)]2)+E([YE(Y)]2)±2E([XE(X)][YE(Y)])=E([XE(X)]2)+E([YE(Y)]2)=D(X)+D(Y)

5、D(X)=0⇔P(X=E(X))=1D(X)=0 \Leftrightarrow P(X=E(X))=1D(X)=0P(X=E(X))=1

6、标准化性质,对 XXX 做如下处理:

X∗=X−E(X)D(X) X^*=\frac{X-E(X)}{\sqrt{D(X)}} X=D(X)XE(X)

那么有 E(X∗)=0E(X^*) = 0E(X)=0D(X∗)=1D(X^*)=1D(X)=1

证明:

E(X∗)=E(X−E(X)D(X))=1D(X)E(X−E(X))=1D(X)(E(X)−E(X))=0 \begin{align*} E(X^*) &= E(\frac{X-E(X)}{\sqrt{D(X)}}) \\ &=\frac{1}{\sqrt{D(X)}}E(X-E(X))\\ &=\frac{1}{\sqrt{D(X)}}(E(X)-E(X)) \\ &=0 \end{align*} E(X)=E(D(X)XE(X))=D(X)1E(XE(X))=D(X)1(E(X)E(X))=0

D(X∗)=1D(X)D(X−E(X))=D(X)D(X)=1 \begin{align*} D(X^*) &= \frac{1}{D(X)}D(X-E(X))\\ &= \frac{D(X)}{D(X)} \\ &= 1 \end{align*} D(X)=D(X)1D(XE(X))=D(X)D(X)=1

常见离散型的期望与方差

0−10-101分布:

P(X=k)=pk(1−p)1−kP(X=k)=p^k(1-p)^{1-k}P(X=k)=pk(1p)1k,$ \ \ k=0,1$

E(X)=pE(X)=pE(X)=p

$D(X) = E(X2)-(E(X))2 =p-p^2 $

二项分布:

P(X=k)=Cnkpkqn−k,  k=0,1,⋯ ,nP(X=k)=C_n^kp^kq^{n-k}, \ \ k=0,1,\cdots,nP(X=k)=Cnkpkqnk,  k=0,1,,n

期望:

E(X)=∑k=0nkP(X=k)=∑k=0nkn!k!(n−k)!pkqn−k=∑k=1nn!(k−1)!(n−k)!pkqn−k=np∑k=1n(n−1)!(k−1)!(n−k)!pk−1qn−k=np∑k′=0n−1Cn−1k′pk′qn−k′−1=np(p+q)n−1=1 \begin{align*} E(X)&=\sum_{k=0}^nkP(X=k) \\ &=\sum_{k=0}^nk\frac{n!}{k!(n-k)!}p^kq^{n-k}\\ &= \sum_{k=1}^n\frac{n!}{(k-1)!(n-k)!}p^kq^{n-k}\\ &= np\sum_{k=1}^n\frac{(n-1)!}{(k-1)!(n-k)!}p^{k-1}q^{n-k}\\ &=np\sum_{k'=0}^{n-1}C_{n-1}^{k'}p^{k'}q^{n-k'-1}\\ &=np(p+q)^{n-1}\\ &= 1 \end{align*} E(X)=k=0nkP(X=k)=k=0nkk!(nk)!n!pkqnk=k=1n(k1)!(nk)!n!pkqnk=npk=1n(k1)!(nk)!(n1)!pk1qnk=npk=0n1Cn1kpkqnk1=np(p+q)n1=1

方差:

先算 E(X2)E(X^2)E(X2)

E(X2)=∑k=0nk2P(X=k)=∑k=0nk2n!k!(n−k)!pkqn−k=∑k=0nk(k−1)n!k!(n−k)!pkqn−k+∑k=0nkn!k!(n−k)!pkqn−k=∑k=2nn(n−1)Cn−2k−2pkqn−k+∑k=1nnCn−1k−1pkqn−k=n(n−1)p2∑k′=0n−2Cn−2k′pk′qn−2−k′+np∑k′=0n−1Cn−1k′pk′qn−1−k′=n(n−1)p2(p+q)n−2+np(p+q)n−1=n(n−1)p2+np=n2p2+np(1−p) \begin{align*} E(X^2)&=\sum_{k=0}^nk^2P(X=k) \\ &= \sum_{k=0}^nk^2\frac{n!}{k!(n-k)!}p^kq^{n-k}\\ &=\sum_{k=0}^nk(k-1)\frac{n!}{k!(n-k)!}p^kq^{n-k}+\sum_{k=0}^nk\frac{n!}{k!(n-k)!}p^kq^{n-k}\\ &=\sum_{k=2}^nn(n-1)C_{n-2}^{k-2}p^kq^{n-k}+\sum_{k=1}^nnC_{n-1}^{k-1}p^kq^{n-k}\\ &=n(n-1)p^2\sum_{k'=0}^{n-2}C^{k'}_{n-2}p^{k'}q^{n-2-k'}+np\sum_{k'=0}^{n-1}C_{n-1}^{k'}p^{k'}q^{n-1-k'}\\ &=n(n-1)p^2(p+q)^{n-2}+np(p+q)^{n-1}\\ &=n(n-1)p^2+np\\ &=n^2p^2+np(1-p) \end{align*} E(X2)=k=0nk2P(X=k)=k=0nk2k!(nk)!n!pkqnk=k=0nk(k1)k!(nk)!n!pkqnk+k=0nkk!(nk)!n!pkqnk=k=2nn(n1)Cn2k2pkqnk+k=1nnCn1k1pkqnk=n(n1)p2k=0n2Cn2kpkqn2k+npk=0n1Cn1kpkqn1k=n(n1)p2(p+q)n2+np(p+q)n1=n(n1)p2+np=n2p2+np(1p)

于是获得 D(X)D(X)D(X)

D(X)=E(X2)−(E(X))2=n2p2+np(1−p)−n2p2=np(1−p) \begin{align*} D(X)&=E(X^2)-(E(X))^2\\ &=n^2p^2+np(1-p)-n^2p^2\\ &=np(1-p) \end{align*} D(X)=E(X2)(E(X))2=n2p2+np(1p)n2p2=np(1p)

0−10-101 分布推导二项分布:

XXX 为二项分布中,实验发生的次数,总共进行了 nnn 次;那么设 XiX_iXi 表示第 iii 次实验是否发生,发生为 111,反之为 000;显然,XiX_iXi 服从0−10-101 分布且有:

X=X1+X2+⋯+Xn X=X_1+X_2+\cdots+X_n X=X1+X2++Xn

即:

E(X)=E(X1+⋯+Xn)=E(X1)+⋯+E(Xn)=np \begin{align*} E(X)&=E(X_1+\cdots+X_n)\\ &=E(X_1)+\cdots+E(X_n)\\ &=np \end{align*} E(X)=E(X1++Xn)=E(X1)++E(Xn)=np

D(X)=D(X1+⋯+Xn)=D(X1)+⋯+D(Xn)=np(1−p) \begin{align*} D(X)&=D(X_1+\cdots+X_n)\\ &=D(X_1) + \cdots + D(X_n)\\ &=np(1-p) \end{align*} D(X)=D(X1++Xn)=D(X1)++D(Xn)=np(1p)

几何分布:

P(X=k)=(1−p)k−1pP(X=k)=(1-p)^{k-1}pP(X=k)=(1p)k1p,  k=1,2,⋯\ \ k=1,2,\cdots  k=1,2,

引理一:∑k=1∞kxk−1=1(1−x)2\sum\limits_{k=1}^{\infty}kx^{k-1}=\frac{1}{(1-x)^2}k=1kxk1=(1x)21

证明:

∑k=1∞kxk−1=(∑k=1∞xk)′=(x1−x)′=1(1−x)2 \begin{align*} \sum\limits_{k=1}^{\infty}kx^{k-1} &= \left(\sum\limits_{k=1}^{\infty}x^k\right)'\\ &=\left(\frac{x}{1-x}\right)'\\ &=\frac{1}{(1-x)^2} \end{align*} k=1kxk1=(k=1xk)=(1xx)=(1x)21

引理二:

证明:

∑k=1∞k2xk−1=∑k=1∞k⋅kxk−1=(∑k=1∞kxk)′=(x∑k=1∞kxk−1)′=(x(1−x)2)′=1+x(1−x)3 \begin{align*} \sum_{k=1}^{\infty}k^2x^{k-1}&=\sum_{k=1}^{\infty}k\cdot kx^{k-1}\\ &=\left(\sum_{k=1}^{\infty}kx^{k}\right)'\\ &=\left( x\sum_{k=1}^{\infty}kx^{k-1}\right)'\\ &=\left(\frac{x}{(1-x)^2}\right)'\\ &= \frac{1+x}{(1-x)^3} \end{align*} k=1k2xk1=k=1kkxk1=(k=1kxk)=(xk=1kxk1)=((1x)2x)=(1x)31+x

期望:

E(X)=∑k=1∞k(1−p)k−1p=p∑k=1∞k(1−p)k−1=p⋅1p2=1p \begin{align*} E(X) &= \sum_{k=1}^{\infty}k(1-p)^{k-1}p\\ &=p\sum_{k=1}^{\infty}k(1-p)^{k-1}\\ &=p\cdot\frac{1}{p^2}\\ &=\frac{1}{p} \end{align*} E(X)=k=1k(1p)k1p=pk=1k(1p)k1=pp21=p1

方差:

D(X)=E(X2)−(E(X))2=[∑k=1∞k2(1−p)k−1]p−1p2=2−pp2−1p2=1−pp2 \begin{align*} D(X) &= E(X^2)-(E(X))^2\\ &=\left[\sum_{k=1}^{\infty}k^2(1-p)^{k-1}\right]p-\frac{1}{p^2}\\ &=\frac{2-p}{p^2}-\frac{1}{p^2}\\ &=\frac{1-p}{p^2} \end{align*} D(X)=E(X2)(E(X))2=[k=1k2(1p)k1]pp21=p22pp21=p21p

泊松分布:

P(X=k)=λkk!e−λP(X=k)=\frac{\lambda^k}{k!}e^{-\lambda}P(X=k)=k!λkeλ,  k=0,1,2,⋯\ \ k=0,1,2,\cdots  k=0,1,2,

期望:

E(X)=∑k=0∞kλkk!e−λ=∑k=1∞λk(k−1)!e−λ=λ∑k=1∞λk−1(k−1)!e−λ=λ∑m=0∞λmm!e−λ=λ⋅1 \begin{align*} E(X)&=\sum_{k=0}^{\infty}k\frac{\lambda^k}{k!}e^{-\lambda}\\ &=\sum_{k=1}^{\infty}\frac{\lambda^k}{(k-1)!}e^{-\lambda}\\ &=\lambda\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}\\ &=\lambda\sum_{m=0}^{\infty}\frac{\lambda^{m}}{m!}e^{-\lambda}\\ &=\lambda\cdot 1 \end{align*} E(X)=k=0kk!λkeλ=k=1(k1)!λkeλ=λk=1(k1)!λk1eλ=λm=0m!λmeλ=λ1

方差:

D(X)=E(X2)−(E(X))2=∑k=0∞k2λkk!e−λ−λ2=∑k=1∞kλk(k−1)!e−λ−λ2=∑k=1∞(k−1)λk(k−1)!e−λ+λ∑k=1∞λk−1(k−1)!e−λ−λ2=λ2∑k=2∞λk−2(k−2)!e−λ+λ−λ2=λ2+λ−λ2=λ \begin{align*} D(X)&=E(X^2)-(E(X))^2\\ &=\sum_{k=0}^{\infty}k^2\frac{\lambda^k}{k!}e^{-\lambda}-\lambda^2\\ &=\sum_{k=1}^{\infty}k\frac{\lambda^k}{(k-1)!}e^{-\lambda}-\lambda^2\\ &=\sum_{k=1}^{\infty}\frac{(k-1)\lambda^k}{(k-1)!}e^{-\lambda}+\lambda\sum_{k=1}^{\infty}\frac{\lambda^{k-1}}{(k-1)!}e^{-\lambda}-\lambda^2\\ &=\lambda^2\sum_{k=2}^{\infty}\frac{\lambda^{k-2}}{(k-2)!}e^{-\lambda}+\lambda-\lambda^2\\ &=\lambda^2+\lambda-\lambda^2\\ &=\lambda \end{align*} D(X)=E(X2)(E(X))2=k=0k2k!λkeλλ2=k=1k(k1)!λkeλλ2=k=1(k1)!(k1)λkeλ+λk=1(k1)!λk1eλλ2=λ2k=2(k2)!λk2eλ+λλ2=λ2+λλ2=λ

常见连续型的期望与方差

1、均匀分布:

$
f(x)=
\begin{cases}
\frac{1}{b-a} \ \ \ \ a \leqslant x \leqslant b \
0 \ \ \ \ \ \ \ \ \text{else}
\end{cases}
$

E(X)=∫abx⋅1b−adx=a+b2E(X)=\int_{a}^b x\cdot\frac{1}{b-a}dx=\frac{a+b}{2}E(X)=abxba1dx=2a+b

D(X)=E(X2)−E(X)2=∫abx2⋅1b−adx−(a+b)24=(b−a)212D(X)=E(X^2)-E(X)^2=\int_a^{b}x^2\cdot\frac{1}{b-a}dx-\frac{(a+b)^2}{4}=\frac{(b-a)^2}{12}D(X)=E(X2)E(X)2=abx2ba1dx4(a+b)2=12(ba)2

2、指数分布:

$
f(x)=
\begin{cases}
\lambda e^{-\lambda x} \ \ \ \ \ x > 0 \
0 \ \ \ \ \ \ \ \ \ \ \ \ \ x \leqslant 0
\end{cases}
$

期望:

E(X)=∫0+∞x⋅λe−λxdx=∫0+∞−x⋅e−λxd(−λx)=∫0+∞−xd(e−λx)=−xe−λx∣0+∞+∫0+∞e−λxdx=1λ \begin{align*} E(X) &= \int_{0}^{+\infty}x\cdot\lambda e^{-\lambda x}dx\\ &=\int_{0}^{+\infty}-x\cdot e^{-\lambda x}d(-\lambda x)\\ &=\int_{0}^{+\infty}-x d( e^{-\lambda x})\\ &=-xe^{-\lambda x}\bigr|_{0}^{+\infty}+\int_{0}^{+\infty}e^{-\lambda x}dx\\ &=\frac{1}{\lambda} \end{align*} E(X)=0+xλeλxdx=0+xeλxd(λx)=0+xd(eλx)=xeλx0++0+eλxdx=λ1

方差:

D(X)=E(X2)−E(X)2=∫0+∞x2λe−λxdx−1λ2=−x2e−λx∣0+∞+2∫0+∞e−λxxdx−1λ2=2λ2−1λ2=1λ2 \begin{align*} D(X) &= E(X^2)-E(X)^2\\ &= \int_0^{+\infty}x^2\lambda e^{-\lambda x}dx -\frac{1}{\lambda^2}\\ &= -x^2e^{-\lambda x} \bigr|_0^{+\infty}+2\int_0^{+\infty}e^{-\lambda x}xdx-\frac{1}{\lambda ^2}\\ &= \frac{2}{\lambda^2}-\frac{1}{\lambda ^2}\\ &= \frac{1}{\lambda^2} \end{align*} D(X)=E(X2)E(X)2=0+x2λeλxdxλ21=x2eλx0++20+eλxxdxλ21=λ22λ21=λ21

正态分布:

X∼N(μ,σ2)X\sim N(\mu,\sigma^2)XN(μ,σ2)

其中 E(X)=μ, D(X)=σ2E(X) = \mu, \ D(X)=\sigma^2E(X)=μ, D(X)=σ2

做变换 Y=X−μσ∼N(0,1)Y = \frac{X-\mu}{\sigma} \sim N(0,1)Y=σXμN(0,1),则E(Y)=0, D(Y)=1E(Y)=0,\ D(Y)=1E(Y)=0, D(Y)=1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值