CNN 卷积神经网络
为什么CNN常用于图像处理:
- 局部性
- 平移性
- 可缩性
CNN简易图
局部性与平移性会在卷积层得到体现。
可缩性会在池化层得到体现。
CNN-卷积层(参数,不同维度下的特征提取)
卷积核的通道数和输入数据的通道数一致,卷积核个数等于输出通道数
CNN-池化层
摊平(Flatten)
- 在test-CNN中卷积核宽度是与词向量的维度一致
- 用卷积核进行卷积时,不仅考虑了词义而且考虑了词序及上下文
CNN实现MNIST
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import optim
from torch.utils.data import DataLoader
from torchvision import transforms
from torchvision import datasets
from matplotlib import pyplot as plt
# tensor type :(batch,channel,w,h)
# 1. Prepare Datases
# data transform to desired form
transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize(0.1307,0.3081)])
# load data
train_data = datasets.MNIST(root='./data/mnist/',train=True,transform=transform)
test_data = datasets.MNIST(root='./data/mnist/',train=False,transform=transform)
# mini-batch
train_loader = DataLoader(dataset=train_data,shuffle=True,batch_size=64,num_workers=2)
test_loader = DataLoader(dataset=test_data,shuffle=False,batch_size=64,num_workers=2)
# 2. Design Model Using class
class MNISTModel(nn.Module):
def __init__(self):
super(MNISTModel,self).__init__()
self.conv1 = nn.Conv2d(1,10,5) # 10,12,12
self.conv2 = nn.Conv2d(10,20,5) # 20,4,4
self.conv3 = nn.Conv2d(20,40,1) # 40,2,2
self.pool = nn.MaxPool2d(2)
self.linear = nn.Linear(160,10)
self.relu = nn.ReLU()
def forward(self,x):
batch_size = x.size(0)
x = self.relu(self.pool(self.conv1(x)))
x = self.relu(self.pool(self.conv2(x)))
x = self.relu(self.pool(self.conv3(x)))
x = x.view(batch_size,-1)
x = self.linear(x)
return x
model = MNISTModel()
# using GPU
device = torch.device('cuda')
model.to(device)
# 3.optmizor and loss function
loss_f = nn.CrossEntropyLoss()
opti = optim.SGD(model.parameters(),lr=0.01,momentum=0.5)
# 4.Traing cycle
def train(epoch):
loss_num = 0.0
for index,data in enumerate(train_loader):
inputs , target = data
inputs , target = inputs.to(device),target.to(device)
outputs = model.forward(inputs)
loss = loss_f(outputs,target)
opti.zero_grad()
loss.backward()
opti.step()
loss_num += loss.item()
if index % 100 == 99:
print(f'epoch:{epoch+1},index:{index+1},loss:{loss_num / 100}')
loss_num = 0
def test():
correct = 0
total = 0
with torch.no_grad():
for data in test_loader:
images, labels = data
images, labels = images.to(device), labels.to(device)
outputs = model.forward(images)
# return (max,maxindex)
_, predicted = torch.max(outputs.data, dim=1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'accuracy on test set: {100 * correct / total} % ')
return correct / total
if __name__ == '__main__':
epoch_list = []
acc_list = []
for epoch in range(10):
train(epoch)
acc = test()
epoch_list.append(epoch)
acc_list.append(acc)
plt.plot(epoch_list, acc_list)
plt.ylabel('accuracy')
plt.xlabel('epoch')
plt.show()