104. [NOIP2003] 神经网络
★☆ 输入文件:sjwl.in
输出文件:
sjwl.out
简单对比
时间限制:1 s 内存限制:128 MB
【问题背景】
人工神经网络( Artificial Neural Network )是一种新兴的具有自我学习能力的计算系统,在模式识别、函数逼近及贷款风险评估等诸多领域有广泛的应用。对神经网络的研究一直是当今的热门方向,兰兰同 学在自学了一本神经网络的入门书籍后,提出了一个简化模型,他希望你能帮助他用程序检验这个神经网络模型的实用性。
【问题描述】
在兰兰的模型中,神经网络就是一张有向图,图中的节点称为神经元,而且两个神经
元之间至多有一条边相连,下图是一个神经元的例子:
神经元〔编号为 1 )
图 中, X1—X3 是信息输入渠道, Y1 - Y2 是信息输出渠道, C i 表示神经元目前的状态, U i 是阈值,可视为神经元的一个内在参数。神经元按一定的顺序排列,构成整个神经网络。在兰兰的模型之中,神经网络中的神经元分为几层;称为输入层、输出层, 和若干个中间层。每层神经元只向下一层的神经元输出信息,只从上一层神经元接受信息。下图是一个简单的三层神经网络的例子。
兰兰规定, C i 服从公式:(其中 n 是网络中所有神经元的数目)
公 式中的 W ji (可能为负值)表示连接 j 号神经元和 i 号神经元的边的权值。当 C i 大于 0 时,该神经元处于兴奋状态,否则就处于平静状态。当神经元处于兴奋状态时,下一秒它会向其他神经元传送信号,信号的强度为 C i 。如此.在输入层神经元被激发之后,整个网络系统就在信息传输的推动下进行运作。现在,给定一个神经网络,及当前输入层神经元的状态( C i ),要求你的程序运算出最后网络输出层的状态。
【输入格式】
输入文件第一行是两个整 数 n ( 1≤n≤200 )和 p 。接下来 n 行,每行两个整数,第 i + 1 行是神经元 i 最初状态和其阈值( U i ),非输入层的神经元开始时状态必然为 0 。再下面 P 行,每行由两个整数 i , j 及一个整数 W ij ,表示连接神经元 i 、 j 的边权值为 W ij 。
【输出格式】
输出文件包含若干行,每行有两个整数,分别对应一个神经元的编号,及其最后的状态,两个整数间以空格分隔。 仅输出最后状态非零的输出层神经元状态,并且按照编号由小到大顺序输出!若输出层的神经元最后状态均为 0 ,则输出 NULL 。
【输入样例】
5 6
1 0
1 0
0 1
0 1
0 1
1 3 1
1 4 1
1 5 1
2 3 1
2 4 1
2 5 1
【输出样例】
3 1
4 1
5 1
注意输出大于0,而不是非0,且注意权为0的边也产生入度和出度
题目原意应该是输出兴奋的神经元
#include <iostream>
#include <cstdio>
using namespace std;
#define MAX_N 201
int n,p;
int status[MAX_N];
int u[MAX_N];
int in[MAX_N];
int out[MAX_N];
int G[MAX_N][MAX_N];
int W[MAX_N][MAX_N];
int stack[MAX_N];
int top;
int main()
{
freopen("sjwl.in","r",stdin);
freopen("sjwl.out","w",stdout);
cin>>n>>p;
for(int i=0;i<n;i++)
cin>>status[i]>>u[i];
for(int i=0;i<p;i++)
{
int a,b,v;
cin>>a>>b>>v;
a--;b--;
G[a][b]=1;
W[a][b]=v;
in[b]++;
out[a]++;
}
top=-1;
for(int i=0;i<n;i++)
{
if(!in[i] && status[i]>0)
{
stack[++top]=i;
}
}
while(top!=-1)
{
int v=stack[top--];
for(int i=0;i<n;i++)
{
if(G[v][i])
{
status[i]+=W[v][i]*status[v];
in[i]--;
if(in[i]==0)
{
status[i]-=u[i];
if(status[i]>0) stack[++top]=i;
}
}
}
}
bool ok=true;
for(int i=0;i<n;i++)
{
if(!out[i] && status[i]>0)
{
cout<<i+1<<" "<<status[i]<<endl;;
ok=false;
}
}
if(ok) cout<<"NULL"<<endl;
return 0;
}