迁移学习提出的背景及历史
1、迁移学习提出背景
在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:
1、带标记的训练样本数量有限。比如,处理A领域(target domain)的分类问题时,缺少足够的训练样本。同时,与A领域相关的B(source domain)领域,拥有大量的训练样本,但B领域与A领域处于不同的特征空间或样本服从不同的分布。
2、数据分布会发生变化。数据分布与时间、地点或其他动态因素相关,随着动态因素的变化,数据分布会发生变化,以前收集的数据已经过时,需要重新收集数据,重建模型。
这时,知识迁移(knowledge transfer)是一个不错的选择,即把B领域中的知识迁移到A领域中来,提高A领域分类效果,不需要花大量时间去标注A领域数据。迁移学习,做为一种新的学习范式,被提出用于解决这个问题。
2、迁移学习发展历史
迁移学习的研究来源于一个观测:人类可以将以前的学到的知识应用于解决新的问题,更快的解决问题或取得更好的效果。迁移学习被赋予这样一个任务:从以前的任务当中去学习知识(knowledge)或经验,并应用于新的任务当中。换句话说,迁移学习目的是从一个或多个源任务(source tasks)中抽取知识、经验,然后应用于一个目标领域(target domain)当中去。
自1995年以来,迁移学习吸引了众多的研究者的目光,迁移学习有很多其他名字:学习去学习(Learning to learn)、终身学习(life-long learning)、推导迁移(inductive transfer)、知识强化(knowledge consolidation)、上下文敏感性学习(context-sensitive learning)、基于知识的推导偏差(knowledge-based inductive bias)、累计/增量学习(increment / cumulative learning)等。
迁移学习的分类
1、迁移学习的研究问题
在迁移学习领域有三个研究问题:(1)、迁移什么;(2)、如何迁移;(3)、什么时候迁移。
1)迁移什么:那一部分知识可以在多个领域或任务之间迁移,即多个领域或任务知识的共同部分,通过从源领域学习这部分共同的知识,提升目标领域任务的效果。
关注迁移什么知识时,需要注意negative transfer问题:当源领域和目标领域之间没有关系,却要在之间强制迁移知识是不可能成功的。极端情况下,反倒会影响目标领域任务学习的效果,这种情况称为负迁移(negative transfer),需要尽力避免。
2)找到了迁移什么,接下来需要解决如何迁移:怎么做知识迁移。什么时候迁移:在什么情况下、什么时候,可以做知识的迁移。
2、转导学习与推导学习区别
推导学习(inductive learning)与转导学习(tranductive learning)的区别:
推导学习:需要先用一些样本(training set)建立一个模型,再基于建立好的模型去去预测新的样本(testing set)的类型。以分类为例,推到学习就是一个经典的贝叶斯决策,通过贝叶斯共识:P(Y|X)=P(X|Y)*P(Y)/ P(X),建立后验概率分布P(Y|X),进而预测测试样本类别。缺点就是必须先建立一个模型,很多时候建立效果好的模型并不容易,特别是当带标记的训练样本少、无标记的测试样本非常多时。那么能否直接利用大量无标记的测试样本来识别样本类别呢?由此产生了转到学习方法。
转导学习:不需要建立后验概率模型,直接从无标记的测试样本X出发,构建P(X)的分布,对测试样本分类。与推到学习相比,转到学习也有它的缺点:因为是直接基于P(X)处理,转导学习的测试样本必须预先已知。
3、基于定义的迁移学习分类
基于迁移学习的定义中源领域和目标领域D和任务T的不同,迁移学习可以分成三类:推导迁移学习(inductive transfer learning),转导迁移学习(tranductive transfer learning)和无监督迁移学习(unsupervised transfer learning)
迁移学习旨在解决训练数据有限和数据分布变化的问题,通过知识迁移提高任务性能。自1995年以来,它已成为研究焦点,涉及如何选择、转移和应用知识。迁移学习分为推导、转导和无监督三种类型,每种都有其特定应用场景和挑战。
1119

被折叠的 条评论
为什么被折叠?



