迁移学习提出的背景及历史
1、迁移学习提出背景
在机器学习、深度学习和数据挖掘的大多数任务中,我们都会假设training和inference时,采用的数据服从相同的分布(distribution)、来源于相同的特征空间(feature space)。但在现实应用中,这个假设很难成立,往往遇到一些问题:
1、带标记的训练样本数量有限。比如,处理A领域(target domain)的分类问题时,缺少足够的训练样本。同时,与A领域相关的B(source domain)领域,拥有大量的训练样本,但B领域与A领域处于不同的特征空间或样本服从不同的分布。
2、数据分布会发生变化。数据分布与时间、地点或其他动态因素相关,随着动态因素的变化,数据分布会发生变化,以前收集的数据已经过时,需要重新收集数据,重建模型。
这时,知识迁移(knowledge transfer)是一个不错的选择,即把B领域中的知识迁移到A领域中来,提高A领域分类效果,不需要花大量时间去标注A领域数据。迁移学习,做为一种新的学习范式,被提出用于解决这个问题。
2、迁移学习发展历史
迁移学习的研究来源于一个观测:人类可以将以前的学到的知识应用于解决新的问题,更快的解决问题或取得更好的效果。迁移学习被赋予这样一个任务:从以前的任务当中去学习知识(knowledge)或经验,并应用于新的任务当中。换句话说,迁移学习目的是从一个或多个源任务(source tasks)中抽取知识、经验,然后应用于一个目标领域(target domain)当中去。
自1995年以来,迁移学习吸引了众多的研究者的目光,迁移学习有很多其他名字:学习去学习(Learning to learn)、终身学习(life-long learning)、推导迁移(inductive transfer)、知识强