HDU3768限制最短路(有必经过的点)

Shopping

Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 519    Accepted Submission(s): 172


Problem Description
You have just moved into a new apartment and have a long list of items you need to buy. Unfortunately, to buy this many items requires going to many different stores. You would like to minimize the amount of driving necessary to buy all the items you need.

Your city is organized as a set of intersections connected by roads. Your house and every store is located at some intersection. Your task is to find the shortest route that begins at your house, visits all the stores that you need to shop at, and returns to your house.
 

Input
The first line of input contains a single integer, the number of test cases to follow. Each test case begins with a line containing two integers N and M, the number of intersections and roads in the city, respectively. Each of these integers is between 1 and 100000, inclusive. The intersections are numbered from 0 to N-1. Your house is at the intersection numbered 0. M lines follow, each containing three integers X, Y, and D, indicating that the intersections X and Y are connected by a bidirectional road of length D. The following line contains a single integer S, the number of stores you need to visit, which is between 1 and ten, inclusive. The subsequent S lines each contain one integer indicating the intersection at which each store is located. It is possible to reach all of the stores from your house.
 

Output
For each test case, output a line containing a single integer, the length of the shortest possible shopping trip from your house, visiting all the stores, and returning to your house.
 

Sample Input
  
1 4 6 0 1 1 1 2 1 2 3 1 3 0 1 0 2 5 1 3 5 3 1 2 3
 

Sample Output
  
4
 

Source
 



思路:求必经过的点到各点的最短距离,然后枚举这些点的全排列得到最优解



//最短路必经过的点 点数在10以内

#include<iostream>
#include<algorithm>
#include<cstring>
#include<string>
#include<cstdio>
#include<queue>
#define INF 99999999
#define min(a,b) (a<b?a:b)
using namespace std;

const int MAXN=100010;

int n,m; //点数和边数
int cnt;// 前向星中的边数
int k; // 必经过的点的点数
int shop[12]; //必经过的点的集合
int dis[12][MAXN];  // 必经过的点到各点的距离
int head[MAXN]; //	前向星的头部
int fg[MAXN];  //离散化必经过的点
struct Ed
{
	int v,w,next;
}e[MAXN*2];

void addEd(int u,int v,int w)
{
	e[cnt].v=v;
	e[cnt].w=w;
	e[cnt].next=head[u];
	head[u]=cnt++;
}



void spfa(int s0,int s)
{
	queue<int>Q;
	int i,u;
	int f[MAXN];
	for(i=0;i<n;i++)
	{
		dis[s][i]=INF;
		f[i]=0;
	}
	dis[s][s0]=0;
	Q.push(s0);

	while(!Q.empty())
	{
		u=Q.front();
		Q.pop();
		f[u]=0;
		for(i=head[u];i!=-1;i=e[i].next)
		{
			if(dis[s][u]+e[i].w<dis[s][e[i].v])
			{
				dis[s][e[i].v]=dis[s][u]+e[i].w;
				f[e[i].v]=1;
				Q.push(e[i].v);
			}
		}
	}
}

void solve()
{
	int i,sum=INF,ans;
	do
	{
		ans=dis[fg[shop[0]]][0];
		for(i=1;i<k;i++)
			ans+=dis[fg[shop[i-1]]][shop[i]];
		ans+=dis[fg[shop[i-1]]][0];
		sum=min(sum,ans);
	}while(next_permutation(shop,shop+k));

	printf("%d\n",sum);
}




void input()
{
	int i,u,v,w,T;
	scanf("%d",&T);
	while(T--)
	{
		cnt=0;
		memset(head,-1,sizeof(head));
		scanf("%d%d",&n,&m);
		for(i=0;i<m;i++)
		{
			scanf("%d %d %d",&u,&v,&w);
			addEd(u,v,w);
			addEd(v,u,w);
		}
		scanf("%d",&k);
		for(i=0;i<k;i++)
		{
			scanf("%d",&shop[i]);
			fg[shop[i]]=i;
			spfa(shop[i],i);
		}
		sort(shop,shop+k);
		solve();
	}
}


int main()
{
	input();
	return 0;
}


### 关于HDU - 6609 的题目解析 由于当前未提供具体关于 HDU - 6609 题目的详细描述,以下是基于一般算法竞赛题型可能涉及的内容进行推测和解答。 #### 可能的题目背景 假设该题目属于动态规划类问题(类似于多重背包问题),其核心在于优化资源分配或路径选择。此类问题通常会给出一组物品及其属性(如重量、价值等)以及约束条件(如容量限制)。目标是优地选取某些物品使得满足特定的目标函数[^2]。 #### 动态转移方程设计 如果此题确实是一个变种的背包问题,则可以采用如下状态定义方法: 设 `dp[i][j]` 表示前 i 种物品,在某种条件下达到 j 值时的大收益或者小代价。对于每一种新加入考虑范围内的物体 k ,更新规则可能是这样的形式: ```python for i in range(n): for s in range(V, w[k]-1, -1): dp[s] = max(dp[s], dp[s-w[k]] + v[k]) ``` 这里需要注意边界情况处理以及初始化设置合理值来保证计算准确性。 另外还有一种可能性就是它涉及到组合数学方面知识或者是图论短路等相关知识。如果是后者的话那么就需要构建相应的邻接表表示图形结构并通过Dijkstra/Bellman-Ford/Floyd-Warshall等经典算法求解两间距离等问题了[^4]。 后按照输出格式要求打印结果字符串"Case #X: Y"[^3]。 #### 示例代码片段 下面展示了一个简单的伪代码框架用于解决上述提到类型的DP问题: ```python def solve(): t=int(input()) res=[] cas=1 while(t>0): n,k=list(map(int,input().split())) # Initialize your data structures here ans=find_min_unhappiness() # Implement function find_min_unhappiness() res.append(f'Case #{cas}: {round(ans)}') cas+=1 t-=1 print("\n".join(res)) solve() ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值