1099. Build A Binary Search Tree (30)

构建BST并层次遍历
本文介绍了一道关于构建二叉搜索树(BST)并进行层次遍历的问题。首先定义了BST的特性,随后详细解释了如何根据输入构建树结构,并最终输出层次遍历的结果。文章还分享了一个简洁高效的实现思路。

Build A Binary Search Tree


题目阐述

A Binary Search Tree (BST) is recursively defined as a binary tree which has the following properties:

The left subtree of a node contains only nodes with keys less than the node’s key.
The right subtree of a node contains only nodes with keys greater than or equal to the node’s key.
Both the left and right subtrees must also be binary search trees.
Given the structure of a binary tree and a sequence of distinct integer keys, there is only one way to fill these keys into the tree so that the resulting tree satisfies the definition of a BST. You are supposed to output the level order traversal sequence of that tree. The sample is illustrated by Figure 1 and 2.
这里写图片描述
Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (<=100) which is the total number of nodes in the tree. The next N lines each contains the left and the right children of a node in the format “left_index right_index”, provided that the nodes are numbered from 0 to N-1, and 0 is always the root. If one child is missing, then -1 will represent the NULL child pointer. Finally N distinct integer keys are given in the last line.

Output Specification:

For each test case, print in one line the level order traversal sequence of that tree. All the numbers must be separated by a space, with no extra space at the end of the line.

Sample Input:
9
1 6
2 3
-1 -1
-1 4
5 -1
-1 -1
7 -1
-1 8
-1 -1
73 45 11 58 82 25 67 38 42
Sample Output:
58 25 82 11 38 67 45 73 42


代码实现

#include <stdio.h>
#include <algorithm>
#include <queue>
using namespace std;
struct node {
    int val, left, right;
}NODE[105];
int n, l[105], r[105], value[105], b[105], cnt;
void dfs(int f) {
    NODE[f].left = l[f];
    NODE[f].right = r[f];
    if (NODE[f].left != -1) dfs(NODE[f].left);
    if (NODE[f].right != -1) dfs(NODE[f].right);
}
void help(int head) {
    if (head == -1) return;
    help(NODE[head].left);
    NODE[head].val = cnt ++;
    help(NODE[head].right);
}
int main() {
    scanf("%d", &n);
    for (int i=0; i<n; i++) {
        scanf("%d%d", &l[i], &r[i]);
        if (l[i] != -1) b[l[i]] = 1;
        if (r[i] != -1) b[r[i]] = 1;
    }
    for (int i=0; i<n; i++) {
        scanf("%d", &value[i]);
    }
    sort(value, value+n);
    int head;
    for (head=0; head<n; head++)
        if (b[head] == 0) break;
    dfs(head);
    cnt = 0;
    help(head);
    queue<int> q;
    q.push(head);
    int flag = true;
    while (!q.empty()) {
        int p = q.front();
        q.pop();
        if (flag) {
            printf("%d", value[NODE[p].val]);
            flag = false;
        } else printf(" %d", value[NODE[p].val]);
        if (NODE[p].left != -1) q.push(NODE[p].left);
        if (NODE[p].right != -1) q.push(NODE[p].right);
    }
    return 0;
}

总结

  • PAT里树的经典题型,这里还是通过树节点的下标之间的关系来构建一棵树,-1为空,以及BST的性质的运用,层次遍历的考察;
  • 整体思路是找到头节点,然后进行一遍深搜,将所有节点之间的父子关系确定下来,然后再中序遍历,将所有排序好的数值对应的value数组下标赋值到NODE每个节点的val里去,最后再层次遍历即可;
  • 本来以为这50行代码已经足够简便,但看了柳神的博客,她直接在输入的时候就将左右节点下标确定好了,相比之下啊,我使用l[105]和r[105]数组显得多此一举了,然后一遍中序遍历将排序后的value[]数组里的数值直接写入node节点里的val里去,genius!简直找不到还有比这更快更美的思路了。
  • 不过其实一开始看到层次遍历,想起柳神之前通过固定分配数组位置来输出所有节点的思路,不通过队列,简直6到飞起;当然那时的节点也限制在30个左右,在一个int长度里可以搞定的数组,但这里是100个,2^100显然不太可行了。
【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论 4
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值