最近毕设项目中用到了最大包络体求算算法,在这里进行简单的整理,为了以后更好的理解。
准备知识
- 关于点的定义
//空间上任何一个点信息
struct Point {
double x, y, z;
Point(){
}
Point(double xx,double yy,double zz):x(xx),y(yy),z(zz){
}
//两向量之差
Point operator -(const Point p1)
{
return Point(x-p1.x,y-p1.y,z-p1.z);
}
//两向量之和
Point operator +(const Point p1)
{
return Point(x+p1.x,y+p1.y,z+p1.z);
}
//叉乘
Point operator *(const Point p)
{
return Point(y*p.z-z*p.y,z*p.x-x*p.z,x*p.y-y*p.x);
}
// 数乘
Point operator *(double d)
{
return Point(x*d,y*d,z*d);
}
// 数除
Point operator / (double d)
{
return Point(x/d,y/d,z/d);
}
//点乘
double operator ^(Point p)
{
return (x*p.x+y*p.y+z*p.z);
}
};
平面凸多边形求算算法
给一系列处于同一平面的空间点,然后求出所有只在最外凸多边形上的所有点集;其实为实现该目标有多种具体的算法, 笔者将通过代码具体实现的方式将其中一种具体实现。
- 算法步骤
- 代码实现
/*求平面内的最大包络多边形
参数解释:平面内所有点信息,用于存储多边形上下两半的二维数组,平面的法向量
*/
void dealWith(vector<Point> &allPoints, vector<Point> polygon[2], Point n1) {
if(allPoints.size() < 2) return;
Point a, b; //最小和最大两个极端顶点;
a.x = allPoints[0].x;
a.y = allPoints[0].y;
a.z = allPoints[0].z;
b.x = allPoints[0].x;
b.y = allPoints[0].y;
b.z = allPoints[0].z;
for(int i=1; i<allPoints.size(); i++) {
if(a.x - allPoints[i].x > eps) {
a.x = allPoints[i].x;
a.y = allPoints[i].y;
a.z = allPoints[i].z;
} else if(fabs(a.x - allPoints[i].x) < eps) {
if(a.y - allPoints[i].y > eps) {
a.x = allPoints[i].x;
a.y = allPoints[i].y;
a.z = allPoints[i].z;
} else if(fabs(a.y - allPoints[i].y) < eps) {
if(a.z - allPoints[i].z > eps) {
a.x = allPoints[i].x;
a.y = allPoints[i].y;
a.z = allPoints[i].z;
}
}
}
if(allPoints[i].x - b.x > eps) {
b.x = allPoints[i].x;
b.y = allPoints[i].y;
b.z = allPoints[i].z;
} else if(fabs(b.x - allPoints[i].x) < eps) {
if(allPoints[i].y - b.y > eps) {
b.x = allPoints[i].x;
b.y = allPoints[i].y;
b.z = allPoints[i].z;
} else if(fabs(b.y - allPoints[i].y) < eps) {
if(allPoints[i].z - b.z > eps) {
b.x = allPoints[i].x;
b.y = allPoints[i].y;
b.z = allPoints[i].z;
}
}
}
}
if (fabs(a.x - b.x) + fabs(a.y - b.y) + fabs(a.z - b.z) < eps) {
polygon[0].push_back(a);
printf("两极值点相距过近,返回了直接");
return;
}
polygon[