The Euler function
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7382 Accepted Submission(s): 3070
Problem Description
The Euler function phi is an important kind of function in number theory, (n) represents the amount of the numbers which are smaller than n and coprime to n, and this function has a lot of beautiful characteristics. Here comes a very easy question: suppose you are given a, b, try to calculate (a)+ (a+1)+....+ (b)
Input
There are several test cases. Each line has two integers a, b (2<a<b<3000000).
Output
Output the result of (a)+ (a+1)+....+ (b)
Sample Input
3 100
Sample Output
3042
Source
对正整数n,欧拉函数是少于或等于n的数中与n互质的数的数目。例如euler(8)=4,因为1,3,5,7均和8互质。
Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。
欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。
Euler函数表达通式:euler(x)=x(1-1/p1)(1-1/p2)(1-1/p3)(1-1/p4)…(1-1/pn),其中p1,p2……pn为x的所有素因数,x是不为0的整数。euler(1)=1(唯一和1互质的数就是1本身)。
欧拉公式的延伸:一个数的所有质因子之和是euler(n)*n/2。
#include<iostream>
#include<cmath>
#include<cstring>
using namespace std;
#define N 3000000+1
typedef long long ll;
ll phi[N];
void init() {
for(int i=1; i<N; i++)
phi[i]=i;
for(int i=2; i<N; ++i) {
if(i==phi[i])
for(int j=i; j<N; j+=i) {
phi[j]=phi[j]/i*(i-1);
}
}
}
int main() {
ios::sync_with_stdio(false);
init();
int cas,a,b;
while(cin>>a>>b) {
ll ans=0;
for(int i=a; i<=b; i++)
ans+=phi[i];
cout<<ans<<endl;
}
return 0;
}