轻松应对多层JSON数据计算与入库

本文介绍了如何使用集算器SPL处理和导入多层JSON数据,包括单层、相同结构的多层及不同结构的多层JSON文件。通过SPL的脚本,可以方便地解析JSON数据并进行筛选、计算,将其转换为二维数据序表,进一步实现数据入库。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

JSON作为一种轻量级的数据交换格式,因其易于读写和交互的特点,已逐渐成为主流的数据类型之一。常见的编程语言大多都对 JSON 的读取与解析提供了接口,但是接下来如何把多层 JSON 数据经过筛选、计算并展开成二维数据,就需要开发人员去头疼了。本文就为大家分享一下如何利用集算器 SPL(结构化处理语言)轻松解决 JSON 数据解析入库的问题。

JSON 数据文件导入与解析

根据 JSON 数据文件的复杂程度,以及不同的需求,我们会分三种情况来讨论:

1. 单层的 JSON 数据文件

我们先从一个简单的例子入手,看看普通键值映射的 JSON 文件如何读取。下面是某产品订单信息的 JSON 数据文件:

SPL导入 JSON 数据文件只需要简单的一句脚本:

= json(file("product.json").read())

不需要写循环函数,也不用解析 JSON 对象,执行一下就可以看到,JSON 数据文件已经转换为二维数据序表了:

 

2. 明细数据相同结构的多层 JSON 数据文件

接下来,我们看一下多层的 JSON 文件如何处理。下面是我们要用到的 JSON 数据文件 orders.json:

可以看到,JSON 数据分为两层,第一层是 "货主国家" 和 "货主地区",第二层是明细数据。现在我们想要从中导入中国华北和华南地区 2013 年的订单,让我们看看如果用 SPL 实现。

这次我们先来定义一下参数:Country、Area 和 Year&

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值