如今,提到人工智能,几乎无人不谈深度学习,似乎不用深度学习就不好意思谈人工智能。今天我们就用几分钟的时间来讲一下深度学习到底是什么,有什么用。
首先深度学习并不等于人工智能,它只是一种算法,和普通的机器学习算法一样,是解决问题的一种方法。真要区分起来,人工智能、机器学习和深度学习,三者大概是下图这种关系。人工智能是一个很大的概念,机器学习是其中的一个子集,而深度学习又是机器学习的一个子集。
其次,深度学习也不是什么新技术,深度学习的概念源于人工神经网络的研究,早在上世纪 40 年代,通用计算机问世之前,科学家就提出了人工神经网络的概念。而那个时候的计算机刚刚开始发展,速度非常慢,最简单的网络也得数天才能训练完毕,效率极其低下,因此在接下来的十几年都没有被大量使用。近些年,随着算力的提升,GPU、TPU 的应用,神经网络得到了重大发展。伴随着 AlphaGo 的胜利,深度学习也一战成名。
其实,同机器学习方法一样,深度学习方法也有监督学习与无监督学习之分。例如,卷积神经网络(Convolutional Neural Networks,简称 CNN)就是一种深度的监督学习下的机器学习模型,而深度置信网络(Deep Belief Nets,简称 DBN)就是一种无监督学习下的机器学习模型。深度学习的”深度“是指从”输入层“到”输出层“所经历层次的数目,即”隐藏层“的层数,层数越多,深度也越深。
所以越是复杂的选择问题,越需要深度的层次多。除了层数多外,每层”神经元“-小圆圈的数目也要多。例如,AlphaGo 的策略网络是 13 层,每一层的神经元数量为 192 个。深度学习的实质,是通过构建具有很多隐层的机器学习模型和海量的训练数据,来学习更有用的特征,从而最终提升分类或预测的准确性。