题目链接:点击打开链接
题解:dp状态方程: dp[i][j] = max(dp[i-1][j-cont[j]]+cont[j],dp[i-1][j-1]);
cont[j]:以第j个点为上沿时能刷到的点。
代码
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#define ll long long
using namespace std;
const int N = 120;
int n,w,k;
int a[N];
int cont[N];
int dp[N][N];
int solve()
{
ll h;
cont[1] = 1;
for (ll i = 1; i < n; i++)
{
h = a[i]-w;
ll j;
for(j = i - 1; ; j--)
{
if (j<0)
break;
if (a[j] < h)
break;
}
cont[i+1] = i-j;
}
cont[0] = 0;
for (int i = 1; i <= n; i++)
memset(dp, 0, sizeof(dp));
for (int i = 1; i <= k; i++)
for (int j = 1; j <= n; j++)
dp[i][j] = max(dp[i - 1][j - cont[j]] + cont[j], dp[i][j - 1]);
return dp[k][n];
}
int main()
{
int test;
scanf("%d", &test);
int x, y;
for (int cas = 1; cas <= test; cas++)
{
scanf("%d%d%d", &n, &w, &k);
for (int i = 0; i < n; i++)
scanf("%d%d", &x, &a[i]);
sort(a, a + n);
printf("Case %d: %d\n", cas, solve());
}
return 0;
}