6、预防性质量保证与企业架构参考模型的归纳方法应用

预防性质量保证与企业架构参考模型的归纳方法应用

预防性质量保证系统

预防性质量保证(PreQA)是一个引导新产品开发人员进行决策以优化产品质量的系统。其独特之处在于高度自动化,用户无需成为数据分析专家,系统会在每个时间点自动提供所需的知识和帮助。

PreQA系统设计了一个通用系统,通过服务器组件处理JavaScript对象表示法(JSON)的请求,实现与其他任意软件的连接。例如,产品可以作为JSON对象发送到服务器,将特征名称映射到字符串或浮点值,缺陷概率则作为将缺陷(以字符串指定)映射到浮点概率值的对象返回。

在初步结果方面,虽然辅助功能的实现及其与第三方软件的集成仍在进行中,但已经可以通过手动应用元分类器来查询分析结果。元分类器处理产品信息时,能够识别从简单事实到专家知识,再到需要昂贵手动数据分析才能发现的观察结果等各种关系。例如,衬衫没有拉链这样的简单事实,聚酯针织品容易起球的专家知识,以及不同生产国家之间的权衡等。在计算性能上,训练一个元分类器通常不超过一分钟,并且数千个元分类器可以同时存储在常规服务器的内存中以便快速选择,查询处理时间不到10毫秒。不过需要注意的是,由于性能原因,通常会对无缺陷物品的较大类别进行约100倍的下采样,导致概率被高估。

企业架构参考模型的归纳方法

企业需要了解其战略、流程、应用和基础设施之间的关系,以快速应对市场和组织内的变化。企业架构(EA)研究领域为此提供了方法和工具,帮助建立更全面的企业视角。EA模型使用如ArchiMate等建模语言来系统地捕获和开发,代表企业的不同架构层。由于EA项目耗时且资源消耗大,企业可以从参考模型中受益。参考企业架构(R - EA)是一类企业的通用EA,可作为具体EA

该数据集通过合成方式模拟了多种发动机在运行过程中的传感器监测数据,旨在构建一个用于机械系统故障检测的基准资源,特别适用于汽车领域的诊断分析。数据按固定时间间隔采集,涵盖了发动机性能指标、异常状态以及工作模式等多维度信息。 时间戳:数据类型为日期时间,记录了每个数据点的采集时刻。序列起始于2024年12月24日10:00,并以5分钟为间隔持续生成,体现了对发动机运行状态的连续监测。 温度(摄氏度):以浮点数形式记录发动机的温度读数。其数值范围通常处于60至120摄氏度之间,反映了发动机在常规工况下的典型温度区间。 转速(转/分钟):以浮点数表示发动机曲轴的旋转速度。该参数在1000至4000转/分钟的范围内随机生成,符合多数发动机在正常运转时的转速特征。 燃油效率(公里/升):浮点型变量,用于衡量发动机的燃料利用效能,即每升燃料所能支持的行驶里程。其取值范围设定在15至30公里/升之间。 振动_X、振动_Y、振动_Z:这三个浮点数列分别记录了发动机在三维空间坐标系中各轴向的振动强度。测量值标准化至0到1的标度,较高的数值通常暗示存在异常振动,可能潜在的机械故障相关。 扭矩(牛·米):以浮点数表征发动机输出的旋转力矩,数值区间为50至200牛·米,体现了发动机的负载能力。 功率输出(千瓦):浮点型变量,描述发动机单位时间内做功的速率,取值范围为20至100千瓦。 故障状态:整型分类变量,用于标识发动机的异常程度,共分为四个等级:0代表正常状态,1表示轻微故障,2对应中等故障,3指示严重故障。该列作为分类任务的目标变量,支持基于传感器数据预测故障等级。 运行模式:字符串类型变量,描述发动机当前的工作状态,主要包括:怠速(发动机运转但无负载)、巡航(发动机在常规负载下平稳运行)、重载(发动机承受高负荷或高压工况)。 数据集整体包含1000条记录,每条记录对应特定时刻的发动机性能快照。其中故障状态涵盖从正常到严重故障的四级分类,有助于训练模型实现故障预测诊断。所有数据均为合成生成,旨在模拟真实的发动机性能变化典型故障场景,所包含的温度、转速、燃油效率、振动、扭矩及功率输出等关键传感指标,均为影响发动机故障判定的重要因素。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值