Pandas日期时间格式化
当进行数据分析时,我们会遇到很多带有日期、时间格式的数据集,在处理这些数据集时,可能会遇到日期格式不统一的问题,此时就需要对日期时间做统一的格式化处理。比如“Wednesday, June 6, 2020”可以写成“6/6/20”,或者写成“06-06-2020。
日期格式化符号
在对时间进行格式化处理时,它们都有固定的表示格式,比如小时的格式化符号为%H
,分钟简写为%M
,秒简写为%S
。下表对常用的日期格式化符号做了总结:
符号 | 说明 |
---|---|
%y | 两位数的年份表示(00-99) |
%Y | 四位数的年份表示(000-9999) |
%m | 月份(01-12) |
%d | 月内中的一天(0-31) |
%H | 24小时制小时数(0-23) |
%I | 12小时制小时数(01-12) |
%M | 分钟数(00=59) |
%S | 秒(00-59) |
%a | 本地英文缩写星期名称 |
%A | 本地英文完整星期名称 |
%b | 本地缩写英文的月份名称 |
%B | 本地完整英文的月份名称 |
%w | 星期(0-6),星期天为星期的开始 |
%W | 一年中的星期数(00-53)星期一为星期的开始 |
%x | 本地相应的日期表示 |
%X | 本地相应的时间表示 |
%Z | 当前时区的名称 |
%U | 一年中的星期数(00-53)星期天为星期的开始 |
%j | 年内的一天(001-366) |
%c | 本地相应的日期表示和时间表示 |
Python处理
Python 内置的 strptime() 方法能够将字符串日期转换为 datetime 类型,下面看一组示例:
import pandas as pd
from datetime import datetime
empdata = pd.read_csv("C:\\Users\\qwy\\Desktop\\data\\empdata.csv")
date_str =empdata.loc[:,'HIREDATE']
for d in date_str:
print(f"转换前数据: