AI大模型翻译,吴恩达教授开源的翻译真强!!!

吴恩达AI翻译系统

吴恩达教授认为AI翻译比传统机器翻译有巨大的改进潜力,开源了一个很棒的AI翻译代理,看了项目源码,它的运作原理很简单,很受启发(不仅限于翻译)。

AI翻译工作流程:
1、提示 LLM 将一种语言翻译成另一种语言。
2、反思翻译并提出建设性建议。
3、使用建议改进翻译。

吴恩达教授提到,在他有限的测试中,有时可以和商业翻译相媲美,并且提供了一个高度可控的翻译系统。

通过简单地改变Prompt提示词,你可以指定语气(正式/非正式)、地区差异,并确保术语翻译的一致性(通过提供词汇表)。

强烈建议根据截图,搜索进入吴恩达教授开源的AI翻译代理,看看反思Prompt提示词怎么写?如何让它改进翻译?最终达到媲美商业翻译的效果。即使你没有翻译场景,其他场景类似,可以触类旁通。

在我自己实际使用AI过程中,也会经常使用“反思”方法,让AI自己检查自己,通常结果能够有很大改进。

08e1594bfe8de87a86b659d08c2311bc.jpeg

去年,谷歌发布了 Google Neural Machine Translation (GNMT),即谷歌神经机器翻译,一个 sequence-to-sequence (“seq2seq”) 的模型。现在,它已经用于谷歌翻译的产品系统。   虽然消费者感受到的提升并不十分明显,谷歌宣称,GNMT 对翻译质量带来了巨大飞跃。   但谷歌想做的显然不止于此。其在官方博客表示:“由于外部研究人员无法获取训练这些模型的框架,GNMT 的影响力受到了束缚。”   如何把该技术的影响力最大化?答案只有一个——开源。   因而,谷歌于昨晚发布了 tf-seq2seq —— 基于 TensorFlow 的 seq2seq 框架。谷歌表示,它使开发者试验 seq2seq 模型变得更方便,更容易达到一流的效果。另外,tf-seq2seq 的代码库很干净并且模块化,保留了全部的测试覆盖,并把所有功能写入文件。   该框架支持标准 seq2seq 模型的多种配置,比如编码器/解码器的深度、注意力机制(attention mechanism)、RNN 单元类型以及 beam size。这样的多功能性,能帮助研究人员找到最优的超参数,也使它超过了其他框架。详情请参考谷歌论文《Massive Exploration of Neural Machine Translation Architectures》。   上图所示,是一个从中文到英文的 seq2seq 翻译模型。每一个时间步骤,编码器接收一个汉字以及它的上一个状态(黑色箭头),然后生成输出矢量(蓝色箭头)。下一步,解码器一个词一个词地生成英语翻译。在每一个时间步骤,解码器接收上一个字词、上一个状态、所有编码器的加权输出和,以生成下一个英语词汇。雷锋网(公众号:雷锋网)提醒,在谷歌的执行中,他们使用 wordpieces 来处理生僻字词。   据雷锋网了解,除了机器翻译,tf-seq2seq 还能被应用到其他 sequence-to-sequence 任务上;即任何给定输入顺序、需要学习输出顺序的任务。这包括 machine summarization、图像抓取、语音识别、对话建模。谷歌自承,在设计该框架时可以说是十分地仔细,才能维持这个层次的广适性,并提供人性化的教程、预处理数据以及其他的机器翻译功能。   谷歌在博客表示: “我们希望,你会用 tf-seq2seq 来加速(或起步)你的深度学习研究。我们欢迎你对 GitHub 资源库的贡献。有一系列公开的问题需要你的帮助!”   GitHub 地址:https://github.com/google/seq2seq   GitHub 资源库:https://google.github.io/seq2seq/nmt/ 标签:tensorflow  seq2seq  谷歌  机器学习
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值