问题描述:
给出S,T两个整数,让你在给出的S个闭区间内找到最少的几个闭区间,能够将[1,T]这个区间给覆盖。
涉及到区间重叠问题。
题目链接:点击打开链接
思路:
用pair类型的数组存储区间端点值,然后进行以first排序(从小到大)。
以p = 1为初始值,找到包含1的最长的区间,然后以此区间的second为p,重复以上步骤。
代码:(注意,代码中将S,T两个值给颠倒了,,,汗!!因为这个wa了n次!!!)
#include<iostream>
#include<cstdio>
#include<cmath>
#include<queue>
#include<cstring>
#include<algorithm>
#define INF 0x3f3f3f3f
#define MAX 30000
using namespace std;
int T, N;
pair<int, int> arr[MAX];
int main(){
while(~scanf("%d%d", &T, &N) ){
int cnt = 0;
for(int i = 0; i < T; i++)
scanf("%d%d", &arr[i].first, &arr[i].second);
sort(arr, arr + T);
//若排序后闭区间没有从1开始的直接输出-1
if(arr[0].first != 1){
printf("-1\n");
continue;
}
if(N == 1){
printf("1\n");
continue;
}
int flag = 0;
arr[T].first = INF;
int temp = 0, t = 0;
//关键步骤!!!
for(int i = 0; i < T; i++){
//区间重叠,保证下一个区间的第一个数在前一个区间内
if(arr[i].first <= t + 1){
//保证第二个数比前一个区间的第二个数大
if(arr[i].second > temp){
temp = arr[i].second;
flag = 1;
}
//非常重要!测试数据出现[6,7],[6,8],[6,9]等类似情况时,保证取到[6,9],而不是[6,8]
if(arr[i+1].first > t + 1 && flag){
t = temp;
cnt++;
flag = 0;
}
}
}
if(t < N)
printf("-1\n");
else
printf("%d\n", cnt);
}
return 0;
}

本文介绍了一种解决区间覆盖问题的方法,通过排序和迭代选择最长的覆盖区间来达到最小覆盖数量的目标。适用于需要高效处理区间重叠问题的场景。
774

被折叠的 条评论
为什么被折叠?



