归并排序 - python

本文详细介绍了归并排序的解决思路,通过递归将列表分成已排序的左右两部分,然后使用合并操作将两个有序部分整合。提供的Python代码展示了如何实现归并排序,并通过示例展示了排序过程。

归并排序

此图片来源于网络:
在这里插入图片描述

解决思路:如下图,列表被虚线分为两部分,左右两部分已排好序。列表最左边2记为low,最右边6为high,9为mid,左边箭头为i,右边箭头为j。比较i和j对应的元素大小,1小,把1拿出来,j右移,i对应的2小于此时j对应的3,2拿出来,i右移,再比较,依次进行。
在这里插入图片描述
递归思想解决左右两边没有排好序的情况。
代码:

import random


# 合并
def merge(li, low, mid, high):
    i = low
    j = mid + 1
    ltmp = []
    while i <= mid and j <= high:  # 只要左右两边都有数
        if li[i] < li[j]:
            ltmp.append(li[i])
            i += 1
        else:
            ltmp.append(li[j])
            j += 1
    # while执行完,左右两边有一边没数了
    while i <= mid:
        ltmp.append(li[i])
        i += 1
    while j <= high:
        ltmp.append(li[j])
        j += 1
    li[low:high + 1] = ltmp


def merge_sort(li, low, high):
    if low < high:  # 至少有两个元素递归
        mid = (low + high) // 2
        merge_sort(li, low, mid)
        merge_sort(li, mid + 1, high)
        merge(li, low, mid, high)


li = list(range(16))
random.shuffle(li)
print(li)
merge_sort(li, 0, len(li) - 1)
print(li)

### Python 实现归并排序计算逆序对 在处理数组中的逆序对问题时,使用归并排序是一种高效的解决方案。相较于暴力法的时间复杂度 \(O(n^2)\)[^2],基于归并排序的方法能够将时间复杂度降低到 \(O(n \log n)\)。 #### 归并排序原理简介 归并排序采用的是分治策略,即将待排序序列分为若干子序列分别进行排序后再合并这些有序子序列形成最终的完全有序序列[^3]。此过程不仅实现了排序功能,在分割与合并的过程中还可以统计出原序列中存在的全部逆序对数量。 #### 代码实现 下面是一个完整的Python程序,它展示了如何利用归并排序来计算给定整数列表中的逆序对数目: ```python def merge_and_count_split_inv(B, C): sorted_array = [] inversions = 0 i, j = 0, 0 while i < len(B) and j < len(C): if B[i] <= C[j]: sorted_array.append(B[i]) i += 1 else: sorted_array.append(C[j]) j += 1 inversions += (len(B) - i) # Append any remaining elements of the arrays to 'sorted_array' sorted_array.extend(B[i:]) sorted_array.extend(C[j:]) return sorted_array, inversions def sort_and_count(array): if len(array) <= 1: return array, 0 mid = len(array) // 2 left_half, x = sort_and_count(array[:mid]) right_half, y = sort_and_count(array[mid:]) merged_array, z = merge_and_count_split_inv(left_half, right_half) return merged_array, x + y + z def count_inversions_merge_sort(arr): _, num_of_inversions = sort_and_count(arr) return num_of_inversions # 测试例子 if __name__ == "__main__": test_arr = [1, 3, 5, 2, 4, 6] print(f"Array {test_arr} has {count_inversions_merge_sort(test_arr)} inversions.") ``` 上述代码定义了一个 `merge_and_count_split_inv` 函数用于合并两个已排序的部分,并在此过程中计数跨越这两个部分之间的所有可能存在的逆序对;另一个辅助函数 `sort_and_count` 则负责递归地拆分输入直到单个元素为止,之后再逐步组合起来的同时累计总的逆序对数目。最后,`count_inversions_merge_sort` 提供了一种简便的方式来获取任意数组内的总逆序对数量[^2]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值