函数中,x是本层网络的激活值。Level就是dropout就是每个神经元要被丢弃的概率。 注意: Keras中Dropout的实现,是屏蔽掉某些神经元,使其激活值为0以后,对激活值向量x1……x1000进行放大,也就是乘以1/(1-p)。 思考:上面我们介绍了两种方法进行Dropout的缩放,那么Dropout为什么需要进行缩放呢? 因为我们训练的时候会随机的丢弃一些神经元,但是预测的时候就没办法随机丢弃了。如果丢弃一些神经元,这会带来结果不稳定的问题,也就是给定一个测试数据,有时候输出a有时候输出b,结果不稳定,这是实际系统不能接受的,用户可能认为模型预测不准。那么一种”补偿“的方案就是每个神经元的权重都乘以一个p,这样在“总体上”使得测试数据和训练数据是大致一样的。比如一个神经元的输出是x,那么在训练的时候它有p的概率参与训练,(1-p)的概率丢弃,那么它输出的期望是px+(1-p)0=px。因此测试的时候把这个神经元的权重乘以p可以得到同样的期望。 当前Dropout被大量利用于全连接网络,而且一般认为设置为0.5或者0.3,而在卷积网络隐藏层中由于卷积自身的稀疏化以及稀疏化的ReLu函数的大量使用等原因,Dropout策略在卷积网络隐藏层中使用较少。总体而言,Dropout是一个超参,需要根据具体的网络、具体的应用领域进行尝试。
# coding:utf-8
import numpy as np
# dropout函数的实现
def dropout(x, level):
if level < 0. or level >= 1: # level是概率值,必须在0~1之间
raise ValueError('Dropout level must be in interval [0, 1[.')
retain_prob = 1. - level
# 我们通过binomial函数,生成与x一样的维数向量。binomial函数就像抛硬币一样,我们可以把每个神经元当做抛硬币一样
# 硬币 正面的概率为p,n表示每个神经元试验的次数
# 因为我们每个神经元只需要抛一次就可以了所以n=1,size参数是我们有多少个硬币。
random_tensor = np.random.binomial(n=1, p=retain_prob, size=x.shape)
# 即将生成一个0、1分布的向量,0表示这个神经元被屏蔽,不工作了,也就是dropout了
print(random_tensor)
x *= random_tensor
print(x)
x /= retain_prob
return x
# 对dropout的测试,大家可以跑一下上面的函数,了解一个输入x向量,经过dropout的结果
x = np.asarray([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], dtype=np.float32)
print(dropout(x, 0.4))