实验13 使用预训练resnet18实现CIFAR-10分类

1.数据预处理

首先利用函数transforms.Compose定义了一个预处理函数transform,里面定义了两种操作,一个是将图像转换为Tensor,一个是对图像进行标准化。然后利用函数torchvision.datasets.CIFAR10下载数据集,这个函数有四个常见的初始化参数:root为数据存储的路径,如果数据已经下载,会直接从这个路径加载数据。train如果为True,表示加载训练集,train如果为False,加载测试集。download如果设置为True,表示如果本地不存在数据集,会自动从互联网上下载。transform指定一个转换函数,对数据进行预处理和数据增强等操作。所以下载训练集train_full时,train赋值为True,下载测试集时,train赋值为False。之后对下载的训练集train_full进行划分,先规定指定的大小,然后利用random_split进行划分,最后就是创建Dataloader,batch_size设为64,得到train_loader,val_loader,test_loader。

代码:

# 检查是否有可用的 GPU
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")

# 数据预处理和增强
transform = transforms.Compose([
    transforms.ToTensor(),  # 将图像转换为Tensor
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))  # 图像标准化
])

# 下载 CIFAR-10 数据集
train_full = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
test = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)

# 划分训练集(40,000)和验证集(10,000)
train_size = int(0.8 * len(train_full))  # 80% 用于训练
val_size = len(train_full) - train_size  # 剩余 20% 用于验证
train_data, val_data = random_split(train_full, [train_size, val_size])

# 创建 DataLoader
train_loader = DataLoader(train_data, batch_size=64, shuffle=True)
val_loader = DataLoader(val_data, batch_size=64, shuffle=False)
test_loader = DataLoader(test, batch_size=64, shuffle=False)

2.模型构建

模型构建就比较简单,直接使用使用pytorch定义的库函数,只有一行代码:

model = models.resnet18(pretrained=False),pretrained=False表示不使用在Imagenet上预训练的权重,pretrained=True表示使用在Imagenet上预训练的权重。因为这个模型是训练Imagenet构建的模型,要想让这个模型适应新任务,需要获取最后一层的输入特征数,然后利用一个全连接层将输出改为10。

代码:

# 初始化 ResNet-18 模型
model = models.resnet18(pretrained=True)
# 修改最后一层(全连接层),适应新的任务
num_ftrs = model.fc.in_features  # 获取最后一层的输入特征数
model.fc = torch.nn.Linear(num_ftrs, 10)  # 将输出改为 10 个类别(例如 CIFAR-10)

3.模型训练

创建Runner类,管理训练、评估、测试和预测过程。还是之前的一套东西,首先是一个init函数,用于初始化数据集、损失函数、优化器等。train函数用于计算在训练集上的loss,并反向传播更新参数。evaluate函数用于计算在验证集上的损失,不用反向传播更新模型的参数,同时根据evaluate函数得到的损失判断是否保存最优模型,利用state_dict函数保存最优模型。test函数首先加载最优模型,然后在测试集计算最优模型的准确率。predict函数预测某

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值