Python — — GPU编程

Python — — GPU编程

要想将Python程序运行在GPU上,我们可以使用numba库或者使用cupy库来实现GPU编程。

壹、numba

Numba 是一个开源的 JIT (Just-In-Time) 编译器,它可以将 Python 代码转换成机器代码以提高性能。Numba 特别适用于需要高性能计算的科学计算和数值计算任务。也就是说可以将python程序编译为机器码,使其可以像c/c++、Java一样快速的运行。同样Numba不仅可以加速 CPU 上的 Python 代码,还可以利用 GPU 进行加速。

安装Numba

pip install numba

一、机器码编程

1. 函数编写:

Numba 的核心功能是 @jit 装饰器,它可以将 Python 函数编译成优化的机器代码。

from numba import jit

@jit(nopython=True)
def my_function(x):
    return x * x

x = 112.0
print(my_function(x))

指定传递参数类型以及返回值类型,nopython表示不使用python编译而直接编译为机器码:

from numba import jit

@jit('float64(float64)', nopython=True)  # 指定输入和输出类型,括号内的是参数类型,括号外的是返回值类型
def my_function(x):
    return x * x

x = 112.0
print(my_function(x))

从 Numba 0.15.1 版本开始,你可以使用 Python 类型注解来指定函数的参数类型:

from numba import jit

@jit
def my_function(x: float) -> float:
    return x * x
2. 使用Numba函数:

使用 Numba 函数,我们可以像使用普通函数一样使用jit修饰过的函数:

result = my_function(10.5)
print(result)  # 输出 110.25

Numba 特别适合于在 NumPy 数组上进行操作。你可以使用 NumPy 数组作为 Numba 函数的参数:

from numba import njit
import numpy as np


@njit
def parallel_function(arr):
    return arr * 2


arr = np.arange(10)
result = parallel_function(arr)
print(result)
3. 使用 Numba 的并行功能:

Numba 提供了并行执行的功能,可以使用 @njit 装饰器来替代 @jit,它会自动并行化循环:

from numba import njit
import numpy as np


@njit
def parallel_function(arr):
    return arr * 2


arr = np.arange(10)
result = parallel_function(arr)
print(result)

二、CUDA编程

1. 引入CUDA 模块:
from numba import cuda
2. 定义 GPU 核函数:

使用 @cuda.jit 装饰器定义 GPU 核函数,这与 CPU 加速中使用的 @jit 类似,但 @cuda.jit 指定了函数将在 GPU 上执行:

@cuda.jit
def gpu_kernel(x, y):
    # 核函数体&#x
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值