栈与队列
用栈实现队列
#define Max 100
typedef struct{
int *s;//存放栈内元素;
int size;//栈内元素数量
}Stack;
Stack* CreateStack(int x){//创建栈
Stack* st=malloc(sizeof(Stack));
st->s=malloc(sizeof(int)*x);
st->size=0;
return st;
}
//入栈
void PushStack(Stack* st,int x){
st->s[st->size]=x;
st->size=st->size+1;
}
//出栈,假设一定有元素
void PopStack(Stack* st){
st->size=st->size-1;
}
//获取栈顶元素
int PeekStack(Stack* st){
return st->s[st->size-1];
}
//判断栈是否空
bool EmptyStack(Stack* st){
return st->size==0;
}
//用栈完成队列操作:入队时放入入队栈,
//出队时取出出队栈的栈顶元素,若为空,则将入队栈中的元素放入出队栈中
typedef struct {
Stack *out;
Stack *in;
} MyQueue;
void FreeStack(Stack *st){
free(st->s);
}
MyQueue* myQueueCreate() {
MyQueue *q=malloc(sizeof(MyQueue));
q->out=CreateStack(100);
q->in =CreateStack(100);
return q;
}
//入队,将元素放入入队栈
void myQueuePush(MyQueue* obj, int x) {
PushStack(obj->in,x);
}
//出队,取出出队栈的栈顶元素,若为空,则将入队栈中的元素放入出队栈中
int myQueuePop(MyQueue* obj) {
int x;
if(EmptyStack(obj->out)){
while(!EmptyStack(obj->in)){
PushStack(obj->out,PeekStack(obj->in));
PopStack(obj->in);
}
}
x=PeekStack(obj->out);
PopStack(obj->out);
return x;
}
int myQueuePeek(MyQueue* obj) {
int x;
if(EmptyStack(obj->out)){
while(!EmptyStack(obj->in)){
PushStack(obj->out,PeekStack(obj->in));
PopStack(obj->in);
}
}
x=PeekStack(obj->out);
return x;
}
bool myQueueEmpty(MyQueue* obj) {
return EmptyStack(obj->in)&&EmptyStack(obj->out);
}
void myQueueFree(MyQueue* obj) {
FreeStack(obj->in);
FreeStack(obj->out);
}
/**
* Your MyQueue struct will be instantiated and called as such:
* MyQueue* obj = myQueueCreate();
* myQueuePush(obj, x);
* int param_2 = myQueuePop(obj);
* int param_3 = myQueuePeek(obj);
* bool param_4 = myQueueEmpty(obj);
* myQueueFree(obj);
*/
用队列实现栈
思路见代码
//用两个队列,一个为空,一个放元素
//当模拟出栈操作时,将有元素的队列除了最后一个元素,全部放入另一个队列,剩余的一个元素当作出栈元素
//若仅用一个队列模拟,那么模拟出栈操作时将出队的元素放入队尾,直到原来的队尾元素到队首
#define Max 100
typedef struct {
int *queue;
int front;//队首
int rear;//队尾
} MyStack;
//这里用一个队列模拟栈
MyStack* myStackCreate() {
MyStack *st=malloc(sizeof(MyStack));
st->queue=malloc(sizeof(int)*Max);
st->front=0;
st->rear=0;
return st;
}
//入栈
void myStackPush(MyStack* obj, int x) {
obj->queue[obj->front]=x;
obj->front=obj->front+1;
}
//出栈
int myStackPop(MyStack* obj) {
int front=obj->front;
int rear=obj->rear;
int size=front-rear;
for(int i=0;i<size-1;i++){
obj->queue[front++]=obj->queue[rear++];
}
int top=obj->queue[rear++];
obj->front=front;
obj->rear=rear;
return top;
}
int myStackTop(MyStack* obj) {
return obj->queue[obj->front-1];
}
bool myStackEmpty(MyStack* obj) {
return obj->front==obj->rear;
}
void myStackFree(MyStack* obj) {
free(obj->queue);
}
/**
* Your MyStack struct will be instantiated and called as such:
* MyStack* obj = myStackCreate();
* myStackPush(obj, x);
* int param_2 = myStackPop(obj);
* int param_3 = myStackTop(obj);
* bool param_4 = myStackEmpty(obj);
* myStackFree(obj);
*/
有效的括号
//括号匹配
//遇到左括号入栈,遇到右括号,则与栈顶左括号匹配,匹配成功则出栈,匹配失败返回false
//最后还要检查栈是否为空
bool match(char a,char b){
if(a=='(')return b==')';
else if(a=='{')return b=='}';
else return b==']';
}
bool isValid(char* s) {
char st[10000+5];
int size=0;
int len=strlen(s);
for(int i=0;i<len;i++){
if(s[i]=='('||s[i]=='['||s[i]=='{'){
st[size++]=s[i];
}
else {
if(size==0)return false;
else if(!match(st[size-1],s[i]))return false;
else{
size--;
}
}
}
if(size!=0)return false;
return true;
}
删除字符串中的所有相邻重复项
思路:栈+模拟
char* removeDuplicates(char* s) {
int len=strlen(s);
char *st=malloc(sizeof(char)*(len+1));
int size=0;
for(int i=0;i<len;i++){
if(size>0){
if(s[i]==st[size-1]){
size--;
}
else st[size++]=s[i];
}
else st[size++]=s[i];
}
st[size]='\0';//注意字符串数组最后要加'\0'
return st;
}
逆波兰表达式求值
思路:模拟
// 遇到操作数入栈,遇到操作符出栈运算
int cal(int a, int b, char op) {
if (op == '+')
return a + b;
else if (op == '-')
return a - b;
else if (op == '*')
return a * b;
else
return a / b;
}
int StringToNum(char* s) {
int ans = 0;
if (s[0] == '-') {
for (int i = 1; s[i] != '\0'; i++) {
ans = ans * 10 + (s[i] - '0');
}
ans = 0 - ans;
} else {
for (int i = 0; s[i] != '\0'; i++) {
ans = ans * 10 + (s[i] - '0');
}
}
return ans;
}
int evalRPN(char** tokens, int tokensSize) {
int st[10000 + 5];
int size = 0;
for (int i = 0; i < tokensSize; i++) {
if (strlen(tokens[i])==1&&(tokens[i][0]=='+'||tokens[i][0]=='-'||tokens[i][0]=='*'||tokens[i][0]=='/')) {
int a = st[size - 1];
int b = st[size-2];
size-=2;
int res=cal(b,a,tokens[i][0]);
st[size++]=res;
}
else{
st[size++]=StringToNum(tokens[i]);
}
}
return st[0];
}
滑动窗口最大值
思路:维护单调队列,队首为最大值
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
int* maxSlidingWindow(int* nums, int numsSize, int k, int* returnSize) {
int queue[numsSize];
int head=0,tail=-1;//队首与队尾
int l=0,r=0;//滑动窗口的左界、右界
while(r<numsSize){
if(r-l<k){//相当于入队操作
while(tail>=head&&nums[r]>queue[tail]){
tail--;
}
queue[++tail]=nums[r++];
}
if(r-l>=k){
if(nums[l]==queue[head])head++;
else nums[l]=queue[head];
l++;
}
}
*returnSize=numsSize-k+1;
return nums;
}
前K个高频元素
方法一:堆
题目链接
官方代码,我不会
/**
* Note: The returned array must be malloced, assume caller calls free().
*/
struct hash_stable{
int key;
int val;
UT_hash_handle hh;
};
typedef struct hash_stable* hash_ptr;
struct pair{
int first;
int second;
};
struct pair* heap;
int heapSize;
void swap(struct pair*a,struct pair *b){
struct pair t=*a;
*a=*b;
*b=t;
}
bool cmp(struct pair* a,struct pair* b){
return a->second<b->second;
}
struct pair top(){
return heap[1];
}
void push(hash_ptr x){
//先放入栈尾
heap[++heapSize].first=x->key;
heap[heapSize].second=x->val;
int p=heapSize;
while(p>1){
int s=p>>1;//s为p的父节点
if(cmp(&heap[s],&heap[p]))return;//父节点更小则不需要换
swap(&heap[s],&heap[p]);
p=s;
}
}
//取出堆顶
void pop(){
heap[1]=heap[heapSize--];//将堆尾放入堆顶,在调整
int p=1;
while((p<<1)<=heapSize){
int s=p<<1;
if(s<heapSize&&cmp(&heap[s+1],&heap[s]))s++;//右孩子小于左孩子更小
if(cmp(&heap[p],&heap[s]))return;
swap(&heap[p],&heap[s]);
p=s;
}
}
int* topKFrequent(int* nums, int numsSize, int k, int* returnSize) {
hash_ptr head=NULL;
hash_ptr p=NULL,tmp=NULL;
for(int i=0;i<numsSize;i++){
HASH_FIND_INT(head,&nums[i],p);
if(p==NULL){
p=malloc(sizeof(struct hash_stable));
p->key=nums[i];
p->val=1;
HASH_ADD_INT(head,key,p);
}
else{
p->val++;
}
}
heap=malloc(sizeof(struct pair)*(k+1));
heapSize=0;
HASH_ITER(hh,head,p,tmp){
if(heapSize==k){
struct pair tmp=top();
if(tmp.second<p->val){
pop();
push(p);
}
}
else {
push(p);
}
}
*returnSize=k;
int *res=malloc(sizeof(int)*k);
for(int i=0;i<k;i++){
struct pair tmp=top();
pop();
res[i]=tmp.first;
}
return res;
}
方法二:后续补充