YOLOV8训练、验证和UI界面部署时可能问题的解决办法

YOLOV8的训练、验证、测试

        为了训练一个基于YOLOv8的手势识别模型,我使用了HaGRID数据集,在完成数据集的标注后,我们就可以将其应用到YOLOV8的训练当中(标注时,务必记住每个手势所对应的顺序,因为模型会对每一类标记的手势分配一个数字做为该类的象征数,比如用0表示call这个手势,而1表示dislike等,这些类对应的数字,我们要修改在训练所需要的__yaml文件当中)。

        在开始训练前,我先创建了3个文件夹,分别对应了训练集、验证集、测试集。其中我将每个集对应的label(标签)和图像数据(image)直接放一个数据集中,因为label的名和图像的名是一一对应的。

        分配好训练集、验证集、测试集,我们需要修改__.yaml文件,我的handgestur.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO128 dataset https://www.kaggle.com/ultralytics/coco128 (first 128 images from COCO train2017) by Ultralytics
# Example usage: yolo train data=coco128.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco128  ← downloads here (7 MB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: /root/autodl-tmp/yolo/pythonProject/datasets  # dataset root dir
train: handgesture/Train/train
val: handgesture/Val/val
test: handgesture/Test
 
# Classes
names:
    0: call
    1: dislike
    2: fist
    3: four
    4: like
    5: mute
    6: ok
    7: one
    8: palm
    9: peace
    10: rock
    11: stop
    12: stop_inverted
    13: three
    14: two_up
    15: two_up_inverted
    16: three2 
    17: peace_inverted
    18: no_gesture




        其中train、val、test指的是训练、验证、测试的路径,输入对应的地址即可。names中输入对应编号的手势即可。

        接下来,打开终端(Anaconda Prompt),我使用的是Linux,打开终端后输入指令

OpenCV(Open Source Computer Vision Library)是一款开源的计算机视觉库,专门为图像视频处理任务设计,广泛应用于学术研究、工业应用以及个人项目中。以下是关于OpenCV的详细介绍: 历史与发展 起源:OpenCV于1999年由英特尔公司发起,旨在促进计算机视觉技术的普及商业化应用。该项目旨在创建一个易于使用、高效且跨平台的库,为开发者提供实现计算机视觉算法所需的基础工具。 社区与支持:随着间的推移,OpenCV吸引了全球众多开发者研究人员的参与,形成了活跃的社区。目前,OpenCV由非盈利组织OpenCV.org维护,并得到了全球开发者、研究机构以及企业的持续贡献支持。 主要特点 跨平台:OpenCV支持多种操作系统,包括但不限于Windows、Linux、macOS、AndroidiOS,确保代码能够在不同平台上无缝运行。 丰富的功能:库中包含了数千个优化过的函数,涵盖了计算机视觉领域的诸多方面,如图像处理(滤波、形态学操作、色彩空间转换等)、特征检测与描述(如SIFT、SURF、ORB等)、物体识别与检测(如Haar级联分类器、HOG、DNN等)、视频分析、相机校正、立体视觉、机器学习(SVM、KNN、决策树等)、深度学习(基于TensorFlow、PyTorch后端的模型加载与部署)等。 高效性能:OpenCV代码经过高度优化,能够利用多核CPU、GPU以及特定硬件加速(如Intel IPP、OpenCL等),实现高速图像处理计算机视觉应用。 多语言支持:尽管OpenCV主要使用C++编写,但它提供了丰富的API绑定,支持包括C、Python、Java、MATLAB、JavaScript等多种编程语言,方便不同领域的开发者使用。 开源与免费:OpenCV遵循BSD开源许可证发布,用户可以免费下载、使用、修改分发库及其源代码,无需担心版权问题。 架构与核心模块 OpenCV的架构围绕核心模块构建,这些模块提供了不同层次的功能: Core:包含基本的数据结构(如cv::Mat用于图像存储操作)、基本的图像矩阵操作、数学函数、文件I/O等底层功能。 ImgProc:提供图像预处理、滤波、几何变换、形态学操作、直方图计算、轮廓发现与分析等图像处理功能。 HighGui:提供图形用户界面(GUI)支持,如图像视频的显示、用户交互(如鼠标事件处理)以及简单的窗口管理。 VideoIO:负责视频的读写操作,支持多种视频格式捕获设备。 Objdetect:包含预训练的对象检测模型(如Haar级联分类器用于人脸检测)。 Features2D:提供特征点检测(如SIFT、ORB)与描述符计算、特征匹配与对应关系估计等功能。 Calib3d:用于相机标定、立体视觉、多视图几何等问题。 ML:包含传统机器学习算法,如支持向量机(SVM)、K近邻(KNN)、决策树等。 DNN:深度神经网络模块,支持导入运行预训练深度学习模型,如卷积神经网络(CNN)。 应用领域 OpenCV广泛应用于: 科研与教育:作为计算机视觉教学研究的基础工具,OpenCV简化了算法原型开发与验证过程。 工业自动化:在视觉检测、机器人导航、产品质量控制等工业场景中,OpenCV用于实图像分析与决策。 安防监控:用于人脸识别、行人检测、行为分析等智能监控系统。 医疗影像分析:在医疗领域,OpenCV可用于医学图像处理、病灶检测、诊断辅助等应用。 自动驾驶:在车辆视觉感知系统中,OpenCV用于道路标志识别、障碍物检测、车道线识别等任务。 多媒体应用:如图像编辑软件、AR/VR应用、游戏开发等,利用OpenCV进行图像视频处理。 物联网与嵌入式系统:在资源受限的嵌入式设备上,OpenCV提供轻量级的计算机视觉解决方案。 学习与社区资源 OpenCV拥有丰富的官方文档、教程、示例代码以及活跃的开发者社区,包括GitHub、StackOverflow、官方论坛等,为学习使用OpenCV提供了有力支持。此外,有许多书籍、在线课程、博客文章研讨会专门讲解OpenCV的使用计算机视觉技术。 综上所述,OpenCV作为一款功能强大、高效、跨平台且开源的计算机视觉库,为开发者提供了实现各类图像视频处理任务所需的工具箱,其广泛的应用领域活跃的社区支持使之成为计算机视觉领域不可或缺的开发工具。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值